
Hybrid Post-Quantum TLS formal specification in
Maude-NPA - toward its security analysis⋆

Duong Dinh Tran1,*,†, Canh Minh Do1,†, Santiago Escobar2 and Kazuhiro Ogata1

1Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan
2VRAIN, Universitat Politècnica de València, Valencia, Spain

Abstract
This paper presents a formal specification of the Hybrid Post-Quantum TLS protocol in Maude-NPA,
toward a security analysis of the protocol, where Hybrid Post-Quantum TLS is a quantum-resistant
version of TLS proposed by AWS as a preparation against future attacks from quantum computers. The
proposed protocol uses a hybrid key exchange mode: one is a classical key exchange algorithm and the
other is a post-quantum key encapsulation mechanism. One of our assumptions about the intruder’s
capabilities is that the intruder can break the security of the classical key exchange algorithm by utilizing
the power of large-scale quantum computers. In the present paper, we focus on presenting how to
formally specify the protocol in Maude-NPA, which is a well-known tool for analyzing the security of
cryptographic protocols, so that later on we can conduct the formal analysis of the protocol with some
security properties.

Keywords
post-quantum, TLS, Maude-NPA, formal specification, security analysis

1. Introduction

Post-quantum cryptographic protocols refer to those alternatives to classical cryptographic
protocols in order to oppose potential attacks from quantum computers. Research on quantum
computers, which exploits quantum mechanical phenomena to solve hard mathematical prob-
lems that are intractable for traditional computers, has increased significantly in recent years.
For example, the integer factorization problem is no longer hard under large-scale quantum
computers running Shor’s algorithm [1]. That leads to most of the asymmetric primitives used
today will become insecure under sufficiently powerful quantum computers because the compu-
tationally hard mathematical problems on which they are relying (i.e., the integer factorization

FAVPQC 2022: International Workshop on Formal Analysis and Verification of Post-Quantum Cryptographic Protocols,
October 24, 2022, Madrid, Spain
⋆

D. D. Tran, C. M. Do, and K. Ogata have been supported by JST SICORP Grant Number JPMJSC20C2, Japan.
S. Escobar has been partially supported by the grant RTI2018-094403-B-C32 funded by
MCIN/AEI/10.13039/501100011033 and ERDF A way of making Europe, by the grant PROMETEO/2019/098 funded
by Generalitat Valenciana, and by the grant PCI2020-120708-2 funded by MICIN/AEI/10.13039/501100011033 and
by the European Union NextGenerationEU/PRTR.

*Corresponding author.
†
These authors contributed equally.
$ duongtd@jaist.ac.jp (D. D. Tran); canhdominh@jaist.ac.jp (C. M. Do); sescobar@upv.es (S. Escobar);
ogata@jaist.ac.jp (K. Ogata)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:duongtd@jaist.ac.jp
mailto:canhdominh@jaist.ac.jp
mailto:sescobar@upv.es
mailto:ogata@jaist.ac.jp
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

problem, the discrete logarithm problem, and the elliptic-curve discrete logarithm problem) can
be efficiently solved by a sufficiently large quantum computer. Meanwhile, many important
milestones in the construction of quantum computer hardware have been achieved with the
involvement of many giants, such as Intel, IBM, and Google. That makes practical quantum
computers closer and closer to reality. Therefore, research on building new post-quantum
cryptographic protocols and security verification of those post-quantum cryptosystems has got
extensive attention from cryptography and security research groups in recent years.

The Hybrid Post-Quantum Transport Layer Security (TLS) Protocol [2] has been proposed by
Amazon Web Services (AWS) as a quantum-resistant version of the TLS 1.2 protocol, where TLS
is known as one of the most widely used cryptographic protocols. The hybrid terminology in the
name of the proposed protocol refers to the hybrid key exchange mode used in the protocol: one
is a conventional key exchange algorithm, i.e., Elliptic Curve Diffie-Hellman (ECDH), and the
other is a post-quantum key encapsulation mechanism (KEM), which can be one of Kyber [3],
SIKE [4], and BIKE [5]. That results in a shared secret key at least as secure as ECDH against a
classical adversary and at least as secure as the selected post-quantum KEM (PQ KEM) against
a quantum adversary.

Maude-NPA is a powerful formal verification tool for analyzing cryptographic protocols that
uses a backward narrowing reachability analysis modulo an equational theory and the Dolev-Yao
strand space model [6, 7], which gives intruders capable of intercepting, modifying, and injecting
messages to impersonate other protocol principals. Narrowing is a generalization of term
rewriting that allows logical variables in terms and replaces pattern matching by unification and
so Maude-NPA supports a symbolic execution. The backward narrowing reachability analysis
starts from a final insecure pattern that represents insecure states, a so-called attack pattern,
to check whether it is reachable from an initial state, which has no further backward steps.
If that is the case, the attack concerned can be conducted for the protocol under verification;
otherwise, the attack cannot. The advantage of Maude-NPA is that it supports protocols with
an unbounded session model and different equational theories as other modern analyzers, such
as Tamarin [8], and especially it is fully automatic. This paper focuses on presenting the formal
specification of the Hybrid Post-Quantum TLS protocol in Maude-NPA, which is the first step
toward conducting a security formal analysis of the protocol.

The remaining of this paper is organized as follows. Section 2 first gives some preliminaries
related to Maude and Maude-NPA. Then, Section 3 describes in detail messages exchanged in
the Hybrid PQ TLS protocol. Section 4 is the main content of the paper, where we present how
to formally specify the protocol in Maude-NPA. After that, Section 5 mentions some related
work, and finally, Section 6 summarizes our paper. The full specification of the protocol in
Maude-NPA is publicly available at https://github.com/duongtd23/PQTLS-MaudeNPA.

2. Preliminaries

Maude-NPA is implemented in Maude [9], a declarative language and high-performance tool
that focuses on simplicity, expressiveness, and performance to support the formal specification
and analysis of concurrent programs/systems in rewriting logic. Maude can directly specify
order-sorted equational logics and rewriting logic [10], and the tool provides several formal

https://github.com/duongtd23/PQTLS-MaudeNPA

analysis methods, such as reachability analysis and LTL model checking. This section gives
the syntax of the Maude language in a nutshell (see [9] for more detail) and describes how
narrowing works with an example.

Functional modules

A functional module ℳ specifies an order-sorted equational logic theory (Σ ,E) with the
syntax: fmodℳ is (Σ ,E) endfm, where Σ is an order-sorted signature and E is the collection
of equations in the functional module. (Σ ,E) may contain a set of declarations as follows:

• importations of previously defined modules (protecting . . . or extending . . . or
including . . .)

• declarations of sorts (sort 𝑠 . or sorts 𝑠 𝑠′ .)
• subsort declarations (subsort 𝑠 < 𝑠′ .)
• declarations of function symbols (op 𝑓 : 𝑠1 . . . 𝑠𝑛→ 𝑠 [𝑎𝑡𝑡1 . . . 𝑎𝑡𝑡𝑘] .)
• declarations of variables (vars 𝑣 𝑣′ .)
• unconditional equations (eq 𝑡 = 𝑡′ .)
• conditional equations (ceq 𝑡 = 𝑡′ if 𝑐𝑜𝑛𝑑 .)

where 𝑠, 𝑠1, . . . , 𝑠𝑛 are sort names, 𝑣, 𝑣′ are variable names, 𝑡, 𝑡′ are terms, 𝑐𝑜𝑛𝑑 is a conjunction
of equations (e.g., 𝑡 = 𝑡′), and 𝑎𝑡𝑡1, . . . 𝑎𝑡𝑡𝑘 are equational attributes. Equations are used as
equational rules to perform the simplification in which instances of the lefthand side pattern that
match subterms of a subject term are replaced by the corresponding instances of the righthand
side. The process is called term rewriting and the result of simplifying a term is called its normal
form.

System modules

A system moduleℛ specifies a rewrite theory (Σ ,E ,R) with the syntax: modℛ is (Σ ,E ,R)
endm, where Σ and E are the same as those in an equational theory and R is the collection of
rewrite rules in the system module. (Σ ,E ,R) may contain all possible declarations in (Σ ,E)
and rewrite rules in R as follows:

• unconditional rewrite rules (rl [𝑙𝑎𝑏𝑒𝑙] : 𝑢 => 𝑣 .)
• conditional rewrite rules (crl [𝑙𝑎𝑏𝑒𝑙] : 𝑢 => 𝑣 if 𝑐𝑜𝑛𝑑 .)

where 𝑙𝑎𝑏𝑒𝑙 is the name of a rewrite rule, 𝑢, 𝑣 are terms, and 𝑐𝑜𝑛𝑑 is a conjunction of equations
and/or rewrites (e.g., 𝑡 => 𝑡′). Rewrite rules are also computed by rewriting from left to right
modulo the equations in the system module and regarded as local transition rules, making many
possible state transitions from a given state in a concurrent system.

Narrowing

Narrowing is a generalization of term rewriting that allows logical variables in terms and replaces
pattern matching by unification. Let us use a classical example in the Maude community to
describe how narrowing works. The formal definition of narrowing can be found in [11]. The
following system module specifies a concurrent machine to buy cakes (c) and apples (a) with
dollars ($) and quarters (q). We suppose that a cake costs a dollar (see the rewrite rule labeled
as buy-c below) while an apple costs three quarters (the rewrite rule buy-a). The machine only
allows buying cakes and apples with dollars. However, the machine can change four quarters
into a dollar (the rewrite rule change).

mod NARROWING-VENDING-MACHINE is
sorts Coin Item Marking Money State .
subsort Coin < Money .
op empty : -> Money .
op __ : Money Money -> Money [assoc comm id: empty] .
subsort Money Item < Marking .
op __ : Marking Marking -> Marking [assoc comm id: empty] .
op <_> : Marking -> State .
ops $ q : -> Coin .
ops c a : -> Item .
var M : Marking .
rl [buy-a] : < M $ > => < M a q > [narrowing] .
rl [buy-c] : < M $ > => < M c > [narrowing] .
eq [change] : q q q q M = $ M [variant] .

endm

where the __ operator is associative and commutative and has an identity element empty, the
<_> operator specifies the machine state, and narrowing and variant attributes are specially
used for narrowing and variant-based equational unification algorithms [12]. Let us consider
a term < M1 > as an initial state that only contains a variable of the sort Money. There would
be several traces from the initial state by using narrowing. At each narrowing step, we must
choose which subterm of the subject term, which rewrite rule of the specification, and which
instantiation on the variables of the subterm and the left-hand side of the rewrite rule (or which
unifier (or substitution) of the subterm and the left-hand side of the rewrite rule) are going
to be considered. Note that only rewrite rules with a narrowing attribute are considered and
only equations with a variant attribute are used to decide the unification problem modulo
the equations. Each narrowing step applied to a given state produces a new branch in the
reachability tree. For example, for each rewrite rule of the machine, there is only one unifier
that makes the initial state equal to the left-hand side of the rewrite rule. Therefore, we can
only obtain the following two narrowing steps, generating only two successor states from the
initial state, by performing narrowing just by one step as follows:

< M1 > ⇝𝜎1, buy-a < a q M2 >
< M1 > ⇝𝜎′

1, buy-c < c M2’ >

where M2 and M2’ are variables of the sort Money and the substitutions are 𝜎1 = {M1 ↦→ $ M2, M ↦→
M2} and 𝜎′

1 = {M1 ↦→ $ M2’, M ↦→ M2’} with the rewrite rules buy-a and buy-c, respectively.
Note that M in the substitutions is the variable used in the left-hand side of the rewrite rules. If

Client Server
ClientHello −→

ServerHello
Certificate

ServerKeyExchange
CertificateRequest*

←− ServerHelloDone
Certificate*

ClientKeyExchange
CertificateVerify*

[ChangeCipherSpec]
Finished −→

[ChangeCipherSpec]
←− Finished

Figure 1: Messages exchanged in a full handshake of the Hybrid Post-Quantum TLS protocol [2]

we take the successor state < a q M2 > and perform two more consecutive narrowing steps, it
makes one trace taking us to the state < a a c q M4 >, which also contains a variable M4 of the
sort Money. The narrowing sequence associated to the state is as follows:

< M1 > ⇝𝜎1, buy-a < a q M2 > ⇝𝜎2, buy-c < a c q M3 > ⇝𝜎3, buy-a < a a c q M4 >

where M3 and M4 are variables of the sort Money and the substitutions are 𝜎2 = {M2 ↦→ $ M3, M ↦→
a q M3} and 𝜎3 = {M3 ↦→ q q q M4, M ↦→ a c M4} with the rewrite rules buy-c and buy-a,
respectively. In the third narrowing step, when we apply the substitution 𝜎3, the instance of
< a c q M3 > is < a c q q q q M4 >, while the instance of the left-hand side of the rewrite rule
buy-a is < a c M4 $ >. The two instances are actually equal thanks to the commutative property
and the equation change. Therefore, the rewrite rule buy-a modulo the equational theory is
used to obtain the state < a a c q M4 >. By using narrowing, we can solve the reachability
problem 𝑆𝑡⇝𝑅,𝐸 𝑆𝑡′ where 𝑆𝑡 and 𝑆𝑡′ are patterns (terms that may have variables) of the sort
State such that some conditions are satisfied, and 𝑅,𝐸 are the rewrite rules and equations in
the specification.

3. Hybrid Post-Quantum TLS 1.2

Figure 1 graphically shows messages exchanged in a full handshake of the Hybrid Post-Quantum
TLS protocol. In this figure, * indicates that the message is not sent unless client authentication
is requested, while [] indicates that the message actually belongs to the change cipher spec
protocol. The hybrid key exchange mechanism in the proposed protocol directly impacts on
ClientHello, ServerHello, ServerKeyExchange, and ClientKeyExchange messages.

The messages exchanged in the protocol can be described as follows. Initially, a client
sends a ClientHello message to a server to start a new session. In the full handshake mode,
a ClientHello message consists of the protocol version, a random number, an empty session
ID, a list of cipher suites (which contains combinations of cryptographic options supported by
the client), and a set of post-quantum KEM parameters (including the name of KEM and its

parameters) supported by the client. Upon reception of the ClientHello message, the server
sends a ServerHello message back to the client, which consists of the protocol version, a random
number, a non-empty session ID, and a selected cipher suite. Together with that message, the
server also sends their digital certificate (a Certificate message) and a ServerKeyExchange
message to the client. The ServerKeyExchange message contains the server’s ECDHE & PQ
KEM public keys and a signature over the two public keys together with the two random
numbers in the ClientHello and ServerHello messages signed by the server’s long-term private
key. In the case when client authentication is requested, the server sends a CertificateRequest
message, which is optional. A ServerHelloDone message is then sent to the client to signal the
completion of the hello-message phase on the server side.

Upon reception of the ServerHelloDone message, the client replies to the server with a
ClientKeyExchange message, which consists of the client’s ECDHE public key and the KEM
ciphertext. Before that, if the server has sent a CertificateRequest message, the client must
send their certificate (a Certificate message) first. Similarly, if the server has requested client
authentication, the client will then send a CertificateVerify message, whose content is a digital
signature over all handshake messages exchanged so far signed by the client’s long-term
private key. After that, a ChangeCipherSpec message (which belongs to the change cipher
spec protocol) is sent to notify that all subsequent messages will be encrypted by the newly
negotiated keys. Finally, the client sends a Finished message, whose content is a hash of all
handshake messages encrypted by a handshake key just negotiated.

Upon reception of the Finished message from the client, the server must validate that the
message is correct. If so, the server sends their own ChangeCipherSpec and Finished messages.
Once the client receives the Finished message, it also has to validate that the message is correct.
After that, both sides are ready for secure data communication.

4. Hybrid PQ TLS formal specification in Maude-NPA

Before going into detail about the formal specification of the Hybrid PQ TLS protocol, this
section first presents strands notation, and how we can use them to model protocol execution
via a simple example. Comprehension of this concept is an essential step to understanding how
we can specify the protocol in Maude-NPA later.

4.1. Formal specification by strands

Maude-NPA uses strands [7] to specify the behavior of a protocol execution and the intruder
capabilities. Each strand is a sequence of positive and negative messages describing a principal
executing a protocol, or the intruder performing actions. A strand is in the following form:

:: 𝑟1, . . . , 𝑟𝑘 :: [+(𝑚1),−(𝑚2), . . . ,−(𝑚𝑖) |+ (𝑚𝑖+1), . . .]

where 𝑟1, . . . , 𝑟𝑘 denote unique freshes generated in the strand, and a positive message +(𝑚)
and a negative message −(𝑚) denote sending and receiving the message 𝑚, respectively. The
vertical bar is used to distinguish between present and future when the strand appears in a state
description. Messages appearing before the bar were sent/received in the past, while messages

appearing after the bar will be sent/received in the future. To illustrate how to specify protocol
execution with strands, let us consider the Needham-Schroeder Public Key (NSPK) protocol [13],
which has three following messages exchanged written in the standard Alice-and-Bob notation:

i) 𝐴→ 𝐵 : 𝑝𝑘(𝐵,𝐴 ;𝑁𝐴)

ii) 𝐵 → 𝐴 : 𝑝𝑘(𝐴,𝑁𝐴 ;𝑁𝐵)

iii) 𝐴→ 𝐵 : 𝑝𝑘(𝐵,𝑁𝐵)

where 𝐴 and 𝐵 denote Alice and Bob principal identifiers, 𝑁𝐴 and 𝑁𝐵 are nonces (unguessable
values) generated by 𝐴 and 𝐵, respectively, and 𝑝𝑘(𝐴,𝑚) denotes the encryption of message
𝑚 by the public key of 𝐴. The three messages can be explained as follows. 𝐴 first generates a
nonce 𝑁𝐴 and sends it together with their ID encrypted by 𝐵’s public key to 𝐵 (note that the
semicolon denotes the concatenation). Upon receiving that message, 𝐵 decrypts it and obtains
a nonce. The nonce and a newly generated nonce 𝑁𝐵 are encrypted by 𝐴 ’s public key and then
sent back to 𝐴. When receiving the message, 𝐴 decrypts it, getting two nonces, and checking if
the first one is exactly the one that 𝐴 has sent in this session. 𝐴 finishes the communication by
sending to 𝐵 the other nonce encrypted under 𝐵’s public key.

To model the protocol in Maude-NPA, we use some built-in sorts in Maude-NPA, such as the
sort Msg that represents messages and the sort Fresh that is used to identify terms that must
be unique. Besides, we introduce some sorts, such as Name and Nonce to distinguish principal
names and nonces, respectively. The two sorts are sub sorts of the sort Msg, which are declared
as follows:

sorts Name Nonce .
subsort Name Nonce < Msg .

Nonce is defined by the following operator:

op n : Name Fresh -> Nonce [frozen] .

where the frozen attribute is attached following the Maude-NPA convention, which is necessary
to tell Maude not to attempt to apply rewrites at the arguments of this operator. Suppose that
A and r respectively are variables of the sorts Name and Fresh, then n(A,r) denotes the nonce
generated by A, where r guarantees its uniqueness. We also declare two public & private
encryption operators respectively as follows:

op pk : Name Msg -> Msg [frozen] .
op sk : Name Msg -> Msg [frozen] .

Let B and N be variables of the sorts Name and Nonce, respectively. The strand specifying the
protocol execution from the 𝐴 side is then defined as follows:

:: r ::
[nil | +(pk(B, A ; n(A,r))), -(pk(A, n(A,r) ; N)), +(pk(B, N)), nil]

The strand says that initially, A generates a nonce based on the fresh r and sends it to B together
with A’s ID encrypted by B’s public key. When A receives another message whose content is their
nonce sent in the first message and another nonce N encrypted under A’s public key (which can
be checked by using their secret key to decrypt the received ciphertext), A replies to B the new
nonce N encrypted under B’s public key. Note that :: r :: denotes the fresh r is generated in

the strand and all messages are put after the vertical bar following the Maude-NPA convention
because the vertical bar is irrelevant when specifying the protocol execution. Note also that ; is
the infix operator of messages concatenation, which is declared as follows:

op _;_ : Msg Msg -> Msg [frozen] .

In the same manner, the strand specifying the protocol execution from the 𝐵 side can be
defined as follows:

:: r ::
[nil | -(pk(B, A ; N)), +(pk(A, N ; n(B,r))), -(pk(B, n(B,r))), nil]

Strands are also used for the specification of the intruder capabilities. But in this case, such
an intruder strand is limited to be in form of a sequence of negative messages (possibly empty)
followed by one positive message combining all previous variables under a function symbol.
For example, to specify the intruder capability in concatenating two arbitrary messages, we
define the following strand:

:: nil :: [nil | -(M1), -(M2), +(M1 ; M2), nil]

where M1 and M2 are variables of the sort Msg. The strand says that if the messages M1 and M2 are
available to the intruder, then the intruder can produce the message M1 ; M2.

4.2. Hybrid PQ TLS formal specification

4.2.1. KEM specification

A key encapsulation mechanism is a tuple of algorithms (KeyGen, Encaps, Decaps) along with a
finite key space 𝒦:

• KeyGen()→ (𝑝𝑘, 𝑠𝑘): A probabilistic key generation algorithm that outputs a public key
𝑝𝑘 and a secret key 𝑠𝑘.

• Encaps(𝑝𝑘)→ (𝑐, 𝑘): A probabilistic encapsulation algorithm that takes as input a public
key 𝑝𝑘, and outputs an encapsulation (or ciphertext) 𝑐 and a shared key 𝑘 ∈ 𝒦.

• Decaps(𝑐, 𝑠𝑘)→ 𝑘: A (usually deterministic) decapsulation algorithm that takes as inputs
a ciphertext 𝑐 and a secret key 𝑠𝑘, and outputs a shared key 𝑘 ∈ 𝒦.

A KEM is 𝜖-𝑐𝑜𝑟𝑟𝑒𝑐𝑡 if for all (𝑝𝑘, 𝑠𝑘)← KeyGen() and (𝑐, 𝑘)← Encaps(𝑝𝑘), it holds that:

Pr[Decaps(𝑐, 𝑠𝑘) ̸= 𝑘] ≤ 𝜖

In this paper, we assume that all KEMs are 0-𝑐𝑜𝑟𝑟𝑒𝑐𝑡, which means that Encaps and Decaps

always correctly return the same shared key 𝑘. Idealizing assumptions like that are typically
necessary when conducting security analysis in the symbolic model. Furthermore, because a
Decaps-failure probability is really small, typically almost 0, we are not over-idealizing when
omitting such Decaps-failure cases. For example, with Kyber, that failure probability is below
2−140 [3], i.e., Kyber is 𝜖-𝑐𝑜𝑟𝑟𝑒𝑐𝑡 with 𝜖 < 2−140.

To model KEMs in Maude-NPA, we first introduce PqSk, PqPk, Cipher, and PqKey sorts to
represent secret keys, public keys, encapsulations, and shared keys, respectively. The sort PqSk
is specified as follows:

op pqSk : Name Fresh -> PqSk [frozen] .

The argument of the sort Fresh ensures the uniqueness of secret keys, while the argument of
the sort Name is not strictly necessary, but it is convenient for identifying the owner of a key.

The Decaps algorithm is straightforwardly declared as follows:

op decap : Cipher PqSk -> PqKey [frozen] .

Unlike Decaps, it is a bit tricky to specify the KeyGen and Encaps procedures because they are
probabilistic algorithms. For each of the two procedures, we add an argument of the sort PqSk
to make them become deterministic procedures. With the Encaps procedures, we declare two
separate Maude operators: encapCipher and encapKey that return the ciphertext 𝑐 and the key
𝑘, respectively. We declare the following operators:

op pqPk : PqSk -> PqPk [frozen] .
op encapCipher : PqPk PqSk -> Cipher [frozen] .
op encapKey : PqPk PqSk -> PqKey [frozen] .

The first operator models the KeyGen procedure, while the two others model the Encaps proce-
dure. The algebraic properties of KEMs are then specified as follows:

op $pqKey : PqSk PqSk -> PqKey [frozen] .
eq encapKey(pqPk(S:PqSk), S2:PqSk) = $pqKey(S:PqSk, S2:PqSk) [variant] .
eq decap(encapCipher(pqPk(S:PqSk),S2:PqSk), S:PqSk)

= $pqKey(S:PqSk, S2:PqSk) [variant] .

where the variant attribute denotes that the two equations are not regular Maude equations
used for simplification, but are equations used for variant-based equational unification [12].
Here we introduce one more operator, namely $pqKey, which is necessary for specifying the
rewritings of encapKey and decap (Encaps and Decaps steps) on proper arguments resulting in
the same key. The first equation can be straightforwardly comprehended. The second equation
states that given an encapsulation 𝑒𝑛 and a secret key 𝑠𝑘, a principal can perform Decaps(𝑒𝑛, 𝑠𝑘)
to get the proper shared key only if 𝑒𝑛 is the result of Encaps when taking as input the public
key associated with the secret key 𝑠𝑘.

4.2.2. ECDH and key calculation specification

To model ECDH in Maude-NPA, we first introduce the following sorts:

sort Scalar Point ECKey .
subsort Point < ECKey .

The sort Point represents points on the curve, which serve as ECDH public keys. The sort
Scalar and ECKey represents the secret keys and shared keys, respectively. We then declare the
following operators:

op p : -> Point .
op sk : Name Fresh -> Scalar [frozen] .
op gen : Point Scalar -> Point [frozen] .
op _*_ : Scalar Scalar -> Scalar [frozen assoc comm] .

The constant p denotes a point generator on the curve, which is publicly known by everyone
including the intruder. The operator sk takes as inputs a principal name and a fresh, and outputs
a scalar, which serves as a secret key. The operator gen takes as inputs a point and a (secret)
scalar and returns as output another point. In particular, when the first argument is a point
generator, the operator outputs a public key, which is used to send to the other peer; and when
the first argument is a public key received from the opposite peer, the operator outputs a shared
key. The last operator is the associative-commutative multiplication operation on scalars, thanks
to the Maude attributes assoc and comm. The algebraic property of ECDH is then specified as
follows:

eq gen(gen(P:Point, K1:Scalar), K2:Scalar)
= gen(P:Point, K1:Scalar * K2:Scalar) [variant] .

Sorts PreMasterSecret and MasterSecret are introduced to represent premaster secrets and
master secrets in the protocol key calculation. We then model their calculations with the
following operators:

op pms : ECKey PqKey -> PreMasterSecret [frozen] .
op ms : PreMasterSecret Rand Rand Point Cipher -> MasterSecret [frozen] .

where the sort Rand represents random numbers generated by clients and servers. A pre-master
secret is the concatenation of an ECDH shared secret and a PQ KEM shared secret. Whereas, a
master secret is computed by the pseudorandom function (PRF) from a pre-master secret and a
seed, which is the combination of the two random numbers in the ClientHello and ServerHello
messages and the ECDH public key & PQ encapsulation in the ClientKeyExchange message
sent in that session.

4.2.3. Honest principal specification

We use three operators rd, sess, and cert that serve as functions to produce random numbers,
session IDs, and digital certificates, respectively. We also define operators sig and enc reflecting
the signature and encryption functions. All of them are as follows:

op rd : Name Fresh -> Rand [frozen] .
op sess : Name Fresh -> Session [frozen] .
op cert : Name -> Cert [frozen] .
op sig : Name Msg -> Msg [frozen] .
op enc : MasterSecret Msg -> Msg [frozen] .

With a server S, a message M, and a master-secret MS, enc(MS,M) denotes the ciphertext obtained
by encrypting M by MS, while sig(S,M) denotes the signature over message M signed by the long-
term private key of server S. By using a name as an argument of the signature algorithm instead
of explicit private key encryption (for example, sig(priKey(S),M)), we implicitly associate a
long-term private key with its owner’s name. For the sake of simplicity and for reducing the
size of the state space, cert(S) is used to denote the digital certificate of the server S, while in
fact, the certificate must contain information about the trusted certificate authority and the
public key of S. By using that simplification form, we explicitly associate a certificate with its
owner’s name and ignore the case when the intruder tries to fake a certificate.

Let r1, r2, and r3 be variables of the sort Fresh; C and S be variables of the sort Name; N and
SS be variables of the sorts Rand and Session, respectively; PK1 and PK2 be variables of the sorts
Point and PqPk, respectively. The execution of the Hybrid PQ TLS protocol up to the client’s
Finished message from a client’s side is specified as follows:

:: r1,r2,r3 ::
[nil |
+(ch ; rd(C,r1)),
-(sh ; N ; SS),
-(sc ; cert(S)),
-(ske ; PK1 ; PK2 ; sig(S, PK1 ; PK2 ; rd(C,r1) ; N)),
+(cke ; gen(p,sk(C,r2)) ; encapCipher(PK2, pqSk(C,r3))),
+(cf ; enc(ms(pms(gen(PK1,sk(C,r2)), encapKey(PK2, pqSk(C,r3))),

rd(C,r1), N, gen(p,sk(C,r2)), encapCipher(PK2, pqSk(C,r3))),
(ch ; rd(C,r1)) ++
(sh ; N ; SS) ++
(sc ; cert(S)) ++
(ske ; PK1 ; PK2 ; sig(S, PK1 ; PK2 ; rd(C,r1) ; N)) ++
(cke ; gen(p,sk(C,r2)) ; encapCipher(PK2, pqSk(C,r3))))

),
nil]

where ch, sh, sc, ske, cke, and cf are constants of the sort Msg, which are acronyms of
ClientHello, ServerHello, Server Certificate, ServerKeyExchange, ClientKeyExchange, and
client’s Finished. The ++ operator denotes message concatenation. The strand says that the
client starts a new connection by sending a ClientHello message with a random number denoted
by rd(C,r1). When the client receives back a ServerHello message, a valid server Certificate
message, and a valid ServerKeyExchange message with ECDH and PQ public keys by means of
PK1 and PK2, the client will send a ClientKeyExchange message with the client’s ECDH public
key exchange and the encapsulation computed with PK2 as one of the inputs. Together with
that message, the client also sends a Finished message, whose content is derived by encrypting
the concatenation of all messages exchanged so far (denoted by ++) under the master secret key.
Note that for the sake of simplicity and for reducing the size of the state space, here we use
the master secret as the symmetric key for encryption of the Finished message, but actually in
the protocol design, such a symmetric key is computed by the PRF function from the master
secret and the two random numbers in the ClientHello and ServerHello messages. In addition,
we also suppose that client authentication is not requested, we eliminate ServerHelloDone &
ChangeCipherSpec messages, and some parameters in the Hello messages such as protocol
version, cipher suites, and PQ KEMs parameters are excluded. Note also that the use of ++ is
unnecessary. For example, based on the definition of _++_, (ch ; rd(C,r1)) ++ (sh ; N ; SS)

is rewritten to (ch ; rd(C,r1) ; sh ; N ; SS), so we can exclude the use of ++. However, we
define and keep on using it because we want to show each message separately so that readers
can easily follow.

In a similar way, we specify the protocol execution from a server’s side up to the client’s
Finished message by the following strand:

:: r1,r2,r3,r4 ::
[nil |

-(ch ; N),
+(sh ; rd(S,r1) ; sess(S,r2)),
+(sc ; cert(S)),
+(ske ; gen(p,sk(S,r3)) ; pqPk(pqSk(S,r4)) ;

sig(S, gen(p,sk(S,r3)) ; pqPk(pqSk(S,r4)) ; N ; rd(S,r1))),
-(cke ; PK1 ; CP),
-(cf ; enc(ms(pms(gen(PK1,sk(S,r3)), decap(CP, pqSk(S,r4))),

N, rd(S,r1), PK1, CP),
(ch ; N) ++
(sh ; rd(S,r1) ; sess(S,r2)) ++
(sc ; cert(S)) ++
(ske ; gen(p,sk(S,r3)) ; pqPk(pqSk(S,r4)) ;

sig(S, gen(p,sk(S,r3)) ; pqPk(pqSk(S,r4)) ; N ; rd(S,r1))) ++
(cke ; PK1 ; CP))

),
nil]

where CP is a variable of the sort Cipher. Note that in both strands, we exclude the appearance
of the server’s Finished message because they are too long to show all. Readers can find the
complete specification from the webpage provided in Section 1.

4.2.4. Intruder capabilities

Maude-NPA uses the standard Dolev-Yao intruder model [6], that is the intruder can, for example,
intercept and glean information from any message in the network; fake, synthesize, and send
messages based on the gleaned information. Similar to the capability in concatenation messages
presented in Section 4.1, we specify the deconcatenation message capability for the intruder as
follows:

:: nil :: [nil | -(M1 ; M2), +(M1), nil] &
:: nil :: [nil | -(M1 ; M2), +(M2), nil] &

The intruder can generate by himself/herself any random number and any point serving as
an ECDH private key exchange:

:: r :: [nil | +(rd(i,r)), nil] &
:: r :: [nil | +(sk(i,r)), nil] &

Note that these two strands consume some fresh r.
For KEMs, if there are some public key PK2, secret key SK, and encapsulation CP that are

available to the intruder, then the intruder can derive some appropriate encapsulations and
keys as follows:

:: nil :: [nil | -(PK2), -(SK), +(encapCipher(PK2,SK)), nil] &
:: nil :: [nil | -(PK2), -(SK), +(encapKey(PK2,SK)), nil] &
:: nil :: [nil | -(CP), -(SK), +(decap(CP,SK)), nil] &

With ECDH, an important assumption we suppose is that the intruder can break the key
exchange security by utilizing the power of quantum computation. That is, if the intruder
knows the two ECDH public keys exchanged between a client and a server, then the intruder
can derive the shared secret key. This is done by the following strand:

:: nil :: [nil | -(gen(p,K1)), -(gen(p,K2)), +(gen(p,K1 * K2)), nil]

where K1 and K2 are variables of Scalar.
There are also some more strands specifying the intruder capabilities, but we omit to present

all of them here. Again, readers can find them from the webpage presented in Section 1.

5. Related work

Hülsing et al. [14] have verified the security of their proposed post-quantum WireGuard (PQ-
WireGuard) protocol [14]. This is a quantum-resistant version of the WireGuard protocol [15],
which is a lightweight and high-performance VPN protocol. The verification confirms that
the protocol enjoys the desired security properties inherited from the WireGuard protocol and
also resists attacks using a large-scale quantum computer. The verification used the Tamarin
prover [8], which is known as one of the state-of-the-art formal verification tools for symbolic
analysis of cryptographic protocols. Similar to Maude-NPA, they have first symbolically modeled
the primitives, messages, etc. used in the protocol as function symbols and terms, and then
specified the desired security properties. However, unlike Maude-NPA, several commonly used
primitives are pre-defined as built-in functions in Tamarin, such as the Diffie-Hellman key
exchange algorithm, symmetric and asymmetric encryption, hashing, and digital signatures,
while Maude-NPA leaves all of these definitions to human users. To prove the protocol enjoys
the desired properties, they also introduced some auxiliary lemmas, which are also needed to
prove. Conjecturing lemmas, however, is one of the most intellectual tasks in formal verification,
which is not a new issue in the theorem proving field.

Using some additional lemmas to complete verification in Tamarin is called the interactive
mode, distinguishing it from the fully automated mode. This way of verification is useful
when the tool fails to prove properties in the fully automated mode or the time taken is too
long. Tamarin operates based on multiset rewriting and its verification algorithm is based
on constraint solving. Similar to Maude-NPA, the tool can handle an unbounded number of
sessions (executions) of protocols. Once the tool terminates, it returns either proof of security
correctness or an attack. A Tamarin specification is essentially a state machine where each
state is a multiset of facts. Transitions between states are defined by rules. Rules specify the
protocol execution, the behavior of honest parties as well as the capabilities of the intruder.
A security property is modeled as a trace property, and then Tamarin checks the satisfiability
and/or the validity of the property. If it is the validity checking, Tamarin first converts it to
checking the satisfiability of the negated formula formalizing the property. Constraint solving
is then used to perform an exhaustive, symbolic search for executions with the trace until a
satisfying trace is found or no more rewrite rules can be applied. Roughly speaking, the negation
of the formula formalizing the validity property in Tamarin corresponds to the attack pattern
in Maude-NPA, and the satisfying trace, if found, in Tamarin corresponds to the initial state, if
found, in Maude-NPA.

Cremers et al. [16] have presented a comprehensive security analysis of TLS 1.3 [17], precisely,
the TLS 1.3 draft 21 release candidate. They used the Tamarin tool to verify the claimed security
requirements, which were stated in the draft, with respect to a Dolev-Yao intruder. Their
analysis considers all the possible interactions of the available handshake modes in TLS 1.3,

such as pre-shared key (PSK) based resumption and zero round trip time (0-RTT), which are
new mechanisms only available from version 1.3. Similar to the work in [14], to complete the
security verification, they have conjectured a number of auxiliary lemmas, with some manual
interaction in the Tamarin interactive mode.

6. Conclusion

This paper has presented a formal specification of the Hybrid PQ TLS protocol in Maude-NPA,
which is the first step toward conducting a security analysis of the protocol with Maude-NPA.
In the next step, from the formal specification, we are going to specify the attack states and
execute experiments to check the satisfiability of the secrecy property and the authentication
property. In addition to the original Maude-NPA, we are also going to use a parallel version
of Maude-NPA [11] for the experiments to make the best use of multicore architectures, for
which we strongly believe that a better running performance than the original one in terms of
verification time will be obtained.

To prepare for the quantum computing era, which may become in a near future, security
analysis by formal methods is necessary to verify and construct secure post-quantum cryp-
tosystems. Security verification by Maude-NPA is fully automated, that is no manual effort is
required once the formal specification and the attack pattern are provided, but it may take a
quite long time if the state space of the system under verification is huge (i.e., state explosion).
Therefore, regarding the long-term future work, we are also interested in formal verifications
of post-quantum cryptographic protocols using some interactive approaches that take less time
but often require some manual human user effort. CafeOBJ/proof score approach [18, 19] is a
promising way, for which we plan to use it to tackle the formal verification of the Hybrid PQ
TLS protocol.

References

[1] P. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in:
Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994, pp.
124–134. doi:10.1109/SFCS.1994.365700.

[2] M. Campagna, E. Crockett, Hybrid Post-Quantum Key Encapsulation Methods (PQ KEM)
for Transport Layer Security 1.2 (TLS), RFC, RFC Editor, 2021. URL: https://datatracker.ietf.
org/doc/html/draft-campagna-tls-bike-sike-hybrid.

[3] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe, G. Seiler,
D. Stehle, CRYSTALS - Kyber: A CCA-Secure Module-Lattice-Based KEM, in: 2018 IEEE
European Symposium on Security and Privacy (EuroS P), 2018, pp. 353–367. doi:10.1109/
EuroSP.2018.00032.

[4] R. Azarderakhsh, M. Campagna, C. Costello, L. Feo, B. Hess, A. Jalali, D. Jao, B. Koziel,
B. LaMacchia, P. Longa, et al., Supersingular isogeny key encapsulation (2020). URL:
https://sike.org/files/SIDH-spec.pdf.

[5] N. Aragon, P. Barreto, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville, P. Gaborit, S. Gueron,
T. Güneysu, C. A. Melchor, R. Misoczki, E. Persichetti, N. Sendrier, J.-P. Tillich, G. Zémor,

http://dx.doi.org/10.1109/SFCS.1994.365700
https://datatracker.ietf.org/doc/html/draft-campagna-tls-bike-sike-hybrid
https://datatracker.ietf.org/doc/html/draft-campagna-tls-bike-sike-hybrid
http://dx.doi.org/10.1109/EuroSP.2018.00032
http://dx.doi.org/10.1109/EuroSP.2018.00032
https://sike.org/files/SIDH-spec.pdf

Bike: Bit flipping key encapsulation - round 3 submission, 2019. URL: https://bikesuite.
org/files/v4.2/BIKE_Spec.2021.09.29.1.pdf.

[6] D. Dolev, A. C. Yao, On the security of public key protocols, IEEE Trans. Inf. Theory 29
(1983) 198–207. doi:10.1109/TIT.1983.1056650.

[7] F. J. Thayer, J. C. Herzog, J. D. Guttman, Strand spaces: Why is a security protocol
correct?, in: Security and Privacy - 1998 IEEE Symposium on Security and Privacy,
Oakland, CA, USA, May 3-6, 1998, Proceedings, IEEE Computer Society, 1998, pp. 160–171.
doi:10.1109/SECPRI.1998.674832.

[8] S. Meier, B. Schmidt, C. Cremers, D. Basin, The TAMARIN Prover for the Sym-
bolic Analysis of Security Protocol, in: N. Sharygina, H. Veith (Eds.), Computer
Aided Verification, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 696–701.
doi:10.1007/978-3-642-39799-8_48.

[9] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, C. L. Talcott (Eds.),
All About Maude - A High-Performance Logical Framework, How to Specify, Program
and Verify Systems in Rewriting Logic, volume 4350 of Lecture Notes in Computer Science,
Springer, 2007. doi:10.1007/978-3-540-71999-1.

[10] J. Meseguer, Twenty years of rewriting logic, in: P. C. Ölveczky (Ed.), Rewriting Logic and
Its Applications, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 15–17.

[11] C. M. Do, A. Riesco, S. Escobar, K. Ogata, Parallel Maude-NPA for cryptographic protocol
analysis, in: K. Bae (Ed.), Rewriting Logic and Its Applications - 14th International
Workshop, WRLA@ETAPS 2022, Munich, Germany, April 2-3, 2022, Revised Selected
Papers, volume 13252 of Lecture Notes in Computer Science, Springer, 2022, pp. 253–273.
doi:10.1007/978-3-031-12441-9_13.

[12] S. Escobar, R. Sasse, J. Meseguer, Folding variant narrowing and optimal variant termi-
nation, in: P. C. Ölveczky (Ed.), Rewriting Logic and Its Applications, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010, pp. 52–68.

[13] R. M. Needham, M. D. Schroeder, Using Encryption for Authentication in Large Networks
of Computers, Commun. ACM 21 (1978) 993–999. doi:10.1145/359657.359659.

[14] A. Hülsing, K. Ning, P. Schwabe, F. Weber, P. R. Zimmermann, Post-quantum WireGuard,
in: 2021 IEEE Symposium on Security and Privacy, 2021, pp. 304–321. doi:10.1109/
SP40001.2021.00030.

[15] J. A. Donenfeld, WireGuard: Next generation kernel network tunnel, in: 24th Annual
Network and Distributed System Security Symposium, NDSS 2017, 2017.

[16] C. Cremers, M. Horvat, J. Hoyland, S. Scott, T. van der Merwe, A comprehensive symbolic
analysis of TLS 1.3, in: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, ACM, 2017, pp. 1773–1788. doi:10.1145/3133956.3134063.

[17] E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.3, RFC 8446, 2018.
doi:10.17487/RFC8446.

[18] K. Ogata, K. Futatsugi, Compositionally Writing Proof Scores of Invariants in the
OTS/CafeOBJ Method, J. Univers. Comput. Sci. 19 (2013) 771–804. doi:10.3217/
jucs-019-06-0771.

[19] K. Ogata, K. Futatsugi, Proof scores in the OTS/CafeOBJ method, in: FMOODS 2003, 2003,
pp. 170–184. doi:10.1007/978-3-540-39958-2_12.

https://bikesuite.org/files/v4.2/BIKE_Spec.2021.09.29.1.pdf
https://bikesuite.org/files/v4.2/BIKE_Spec.2021.09.29.1.pdf
http://dx.doi.org/10.1109/TIT.1983.1056650
http://dx.doi.org/10.1109/SECPRI.1998.674832
http://dx.doi.org/10.1007/978-3-642-39799-8_48
http://dx.doi.org/10.1007/978-3-540-71999-1
http://dx.doi.org/10.1007/978-3-031-12441-9_13
http://dx.doi.org/10.1145/359657.359659
http://dx.doi.org/10.1109/SP40001.2021.00030
http://dx.doi.org/10.1109/SP40001.2021.00030
http://dx.doi.org/10.1145/3133956.3134063
http://dx.doi.org/10.17487/RFC8446
http://dx.doi.org/10.3217/jucs-019-06-0771
http://dx.doi.org/10.3217/jucs-019-06-0771
http://dx.doi.org/10.1007/978-3-540-39958-2_12

	1 Introduction
	2 Preliminaries
	3 Hybrid Post-Quantum TLS 1.2
	4 Hybrid PQ TLS formal specification in Maude-NPA
	4.1 Formal specification by strands
	4.2 Hybrid PQ TLS formal specification
	4.2.1 KEM specification
	4.2.2 ECDH and key calculation specification
	4.2.3 Honest principal specification
	4.2.4 Intruder capabilities

	5 Related work
	6 Conclusion

