
Modeling and verification of the post-quantum key
encapsulation mechanism KYBER using Maude
Víctor García1,∗, Santiago Escobar1 and Kazuhiro Ogata2

1Universitat Politècnica de València (UPV), Camí de Vera, s/n, 46022 València, Valencia, Spain
2Japan Advanced Institute of Science and Technology (JAIST), Ishikawa 923–1292, Japan

Abstract
Communication and information technologies shape the world’s systems of today, and those systems
shape our society. The security of those systems relies on mathematical problems hard to solve for
classical computers, that is, the available current computers. Recent advances in quantum computing
threaten the security of our systems and the communications we use. In order to face this threat, multiple
solutions and protocols have been proposed. Kyber is one of these protocols, and precisely it is a key
encapsulation mechanism that bases its security in the learning with errors problem over module lattices.
The presented work focuses on the analysis of Kyber to check its security under Dolev-Yao adversary
assumptions. For that matter, we first learn about the current state of the solutions proposed against the
threat of quantum adversaries and study how Kyber works. In the system-specification language Maude,
we then construct a symbolic model to represent the behaviour of Kyber in a network. In this model,
we conduct reachability analysis with the search command and find that a Man-In-The-Middle attack
is present. Then we use the Maude LTL logical model checker to extend the analysis of the system by
proving if liveness and security properties hold.

Keywords
Maude, rewriting logic, formal verification, post-quantum protocols, key encapsulation mechanisms

1. Introduction

Today’s security is heavily based on complex problems. Most of the current network infrastruc-
ture and systems work over classical computers. Specifically, most of these protocols rely on
three problems considered hard to solve under classic computation: the integer factorization
problem, the discrete logarithm problem and the elliptic-curve discrete logarithm problem. Such
problems are considered to be in category NP, which stands for non-polynomial time, for classic
computers.

Research in the quantum field has been active in the past years, proposing new algorithms and
methods that could endanger the security of current crypto-systems and cryptography protocols.
As stated before, the protocols of today are based on mathematical problems hard to solve for
classical computers, but such problems become solvable with quantum computers. Some of the

FAVPQC 2022: International Workshop on Formal Analysis and Verification of Post-Quantum Cryptographic Protocols,
October 24, 2022, Madrid, Spain
∗Corresponding author.
Envelope-Open vicgarv2@upv.es (V. García); sescobar@upv.es (S. Escobar); ogata@jaist.ac.jp (K. Ogata)
GLOBE http://personales.upv.es/sanesro/ (S. Escobar); http://www.jaist.ac.jp/~ogata/ (K. Ogata)
Orcid 0000-0003-0681-1130 (V. García); 0000-0002-3550-4781 (S. Escobar); 0000-0002-4441-3259 (K. Ogata)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:vicgarv2@upv.es
mailto:sescobar@upv.es
mailto:ogata@jaist.ac.jp
http://personales.upv.es/sanesro/
http://www.jaist.ac.jp/~ogata/
https://orcid.org/0000-0003-0681-1130
https://orcid.org/0000-0002-3550-4781
https://orcid.org/0000-0002-4441-3259
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

most popular asymmetric (or public key) algorithms, which rely on integer factorization, will
become insecure under quantum computers using Shor’s algorithm [1]. Another example is
Grover’s search algorithm [2] for unstructured databases, which in principle one could ask what
it has to do with cryptography. It has been shown in that same paper that this algorithm makes
it possible to reduce the complexity of the integer factorization problem to a quadratic cost.

In order to face the threat that quantum computers suppose to the security of most information
systems, the National Institute for Standards and Technologies (NIST) started in 2017 the Post-
Quantum Cryptography Project (PQC). The project is conducted as a competition, divided into
multiple rounds, to analyze candidate protocols to be used in a standard as a solution against
quantum adversaries. There have been four rounds of the project, and the candidates vary
from public-key encryption and key-establishment algorithms to digital signature algorithms.
For this work we selected round 3, which was finalized in 2020. Round 4, announced on
the 5th of July of 2022, marks the near end of the project. This paper focuses on public-key
encryption and key-establishment algorithms because some attacks have been found, such as
Man-In-The-Middle or Meet-In-The-Middle (MITM) attacks.

The protocol we selected to work with is Kyber, more specifically CRYSTALS-Kyber, from
the suite of protocols denoted as CRYSTALS, standing for Cryptographic Suite for Algebraic
Lattices. Kyber is a Key Encapsulation Mechanism (KEM) and bases its security on the hardness
of solving the Learning With Errors problem over module lattices. These KEMs’ primary goal
is to securely share a given key between two network participants where channels are not
safe from intruders. Such a goal is interesting for conventional cryptography, also known as
Symmetric Cryptosystem, which uses a secret key to encrypt a message. We deeply explain
Kyber in Section 3.

Now that we have the problem of quantum computers and a possible solution provided by
NIST, we need to establish how to analyze and reason about the protocol. For the analysis of
security systems and protocols, two kinds of approaches can be taken: computational security
and symbolic security. The former is based on mathematical proofs over a computational
model, where messages are bit strings, and the adversary is any probabilistic Turing machine.
Cryptographers generally use computational security, and the authors of Kyber have already
covered this approach. The latter is based on the use of symbols, where the cryptography
primitives are function symbols acting as black boxes. It is important to note that these
models assume perfect cryptography, i.e., ciphertexts cannot be broken without the proper key.
Although the computational model is closer to reality, it complicates the proofs and is hard to
understand for non-experts of cryptography. On the other hand, symbolic models are suitable
for automation and easier to understand, so in this paper our experiments belong to the latter.
It is essential to mention that this approach not only can be applied to the selected protocol
but also any other scheme or mechanism on rounds 3 or 4 of the Post-Quantum Cryptography
project.
Related work: Current advances in the security of protocol analysis have been made. One

interesting idea is the one proposed at [3], where the author explains several examples about the
formal specification of protocols and introduces and explains the symbolic and computational
model analysis. In [4], the authors explore the current literature and papers on both symbolic
and computational analysis of protocols. In this survey, they analyze the results by combining
both types of analysis. This proposal was made initially by [5] in order to close the gap

between both lines of protocol verification. One can also find specific papers [6][7] applying
symbolic, computational or both analyses over cryptography protocols. In the former, the
authors apply symbolic analysis, specifically Automated Theorem Proving (ATP), to verify the
IKEv2 handshake protocol from the suite IPsec, finding security gaps. In the latter, the authors
present a variant of a handshake protocol from theWireGuard VPN protocol with post-quantum
capabilities. They perform such adaptation by replacing the previous Diffie-Hellman-based
handshake with key-encapsulation mechanisms (KEMs). The authors verify their proposal’s
security with symbolic and computational proofs. On the one hand, the symbolic proofs can
verify more security properties than the computational proofs and are computer verified. On
the other hand, the computational proofs give stronger security guarantees as the proof makes
less idealizing assumptions.

Among the various protocol analysis tools available, we have Maude-NPA [8], related to
the programming language Maude [9]. Maude-NPA has a theoretical basis on rewriting logic,
unification and narrowing and performs a backwards search from a final attack state to determine
whether or not it is reachable from an initial state. Other tools, such as ProVerif [10], are based
on an abstract representation of a protocol using Horn clauses. The verification of security
properties is done by reasoning on these representative clauses. Other tools such as Tamarin [11]
are based on constraint solving to perform an exhaustive, symbolic search for executions traces.
Furthermore, other tools such as Scyther [12] or CPSA [13] attempt to enumerate all the essential
parts of the different possible executions of a protocol. Also the DEEPSEC prover [14] is another
tool which is mostly used to decide equivalence properties.

Finally, [15][16] are first symbolic security analyses of a collection of post-quantum protocols,
among which Kyber is found. A man-in-the-middle (MITM) attack is found for each of those
protocols, with the search analysis using Maude. This paper aims to provide a higher level
or more abstract model and symbolic analysis of Kyber than [15]. A more abstract model
is needed to better understand and reason on KEMs for non-experts of cryptography. Our
symbolic analysis also aims to demonstrate that a MITM attack is present and prove that our
model considers all protocol’s possible behaviours. In [16], the same authors have used the
methodology from [15] for the KEM known as SABER, a close relative of Kyber. It may be
interesting to apply our new methodology proposed in this paper to other KEMs like SABER.
Roadmap: The rest of the paper is structured as follows. Sect. 2 introduces the Dolev-Yao

adversary model and a gentle presentation of what Maude is. Sect. 3 explains the behaviour
and security principles of Kyber. Sect. 4 describes the core modules for the construction of
our symbolic model of the protocol. Sect. 5 dives into the two approaches carried on over the
symbolic model. Finally, Sect. 6 summarizes the paper.

2. Preliminaries

2.1. Dolev-Yao adversary model

The Dolev-Yao adversary model was first introduced in [17]. In this paper, the authors explained
that public-key schemes are secure against adversaries that cannot modify the environment,
which is unrealistic. That is why they presented different examples of protocols whose security
properties could be compromised if an intruder can take action over the messages of a network.

An intruder can be either passive or active over a network where other participants send and
receive messages during, for example, a handshake protocol or a key exchange scheme. The
former intruder can only read the message and extract raw content from it, meaning they
cannot derive any information from messages without the proper private key. The latter type of
intruder cannot only read messages but also modify them and send them through the network.
It is essential to clarify that the intruder is considered a polynomial-time Turing machine.

In this seminal work, the authors proposed the Dolev-Yao intruder model. This model states
the capabilities an intruder has over a network. Such capabilities are:

• Intruder can obtain any message that is passing through the network.
• He is a legitimate user of the network. That is, he can do any actions a honest participant
can.

• The intruder has the opportunity to be a receiver to any participant. That is, he can
receive messages from other participants.

It must be noted that the network participants, the intruder included, must comply with the
following assumptions.

• One-way functions are unbreakable. In other words, the basic primitives of the protocol
are considered to be non-reversible.

• The definition of the protocol cannot be changed and must be followed by any participant.
A user cannot do undefined steps during the protocol execution.

• Public keys can be used for encryption by everyone.
• Private keys can be used for decryption of messages encrypted by the corresponding
public key.

2.2. Maude

Maude [9] is based on rewriting logic [18], a logic ideally suited to specify and execute compu-
tational systems in a simple and natural way. Since nowadays most computational systems are
concurrent, rewriting logic is particularly well suited to specify concurrent systems without
making any a priori commitments about the model of concurrency in question, which can be
synchronous or asynchronous, and can vary widely in its shape and nature: from a Petri net
[19] to a process calculus [20], from an object-based system [21] to asynchronous hardware
[22], from a mobile ad hoc network protocol [23] to a cloud-based storage system [24], from a
web browser [25] to a programming language with threads [26], or from a distributed control
system [27] to a model of mammalian cell pathways [28, 29]. And all without any encoding: You
see and get a direct system definition without any artificial encoding.

Maude is based on rewriting logic, and rewriting logic has a sub-logic called membership
equational logic. This sub-logic defines a system’s deterministic parts using functional modules.
In contrast, Maude systemmodules represent concurrent systems as conditional rewrite theories
that model a nondeterministic system which may never terminate and where the notion of a
computed value may be meaningless. In this concurrent system, the membership equational
sub-theory defines the states of such a system as the elements of an algebraic data type, such as

terms in an equivalence class associated with cryptography properties. We can call this aspect
the static part of the specification. Instead, its dynamics, i.e., how states evolve, are described by
the transition rules, which specify the possible local concurrent transitions of the system thus
specified. The system’s concurrency is naturally modeled by the fact that several transition
rules in a given state may be applied concurrently to different sub-parts, producing several
concurrent local state changes. Thus rewriting logic models those concurrent transitions as
logical deductions [18].

The most basic form of system analysis, in the form of explicit-state model checking, is
illustrated by the use of the search command in Maude that performs reachability analysis
from an initial state to a target state. Reachability can be used to verify invariants or find
violations of invariants in the following sense. We can search for a violation of an invariant. If
the invariant fails to hold, it will do so for some finite sequence of transitions from the initial
state, which will be uncovered by the search command above since all reachable states are
explored in a breadth-first manner. If the invariant does hold, we may be lucky and have a finite
state system, in which case the search command will report failure to find a violation of the
invariant. However, if there is an infinite number of states reachable from the initial state, the
search will never terminate.

Under the assumption that the set of states reachable from an initial state is finite, Maude also
supports explicit-state model checking verification of any properties in linear-time temporal
logic (LTL) through its LTL model checker.

3. Key Encapsulation Mechanism KYBER

3.1. Behaviour

In order to explain the behaviour of Kyber, we should look at Fig. 1. Participants of the protocol
will be Alice and Bob for literature reasons.

The protocol is initiated when a participant, id est, Alice, performs the KeyGen step. KeyGen
is a function which has no parameters and will provide a pair of keys (PK, SK). The former key,
PK, is the public key and can be known by every other network participant. The latter, SK, is a
secret key only known and accessible by the user that generated it, in this case, Alice. Once
Alice has both keys in his possession, she will send a message to another participant, Bob, with
her public key. Once Bob receives Alice’s public key, he performs Enc, which stands for Encrypt,
using the received public key. Function Enc produces a pair (C, K), where C is a ciphered text
containing the second element of the pair, K, which is the future shared key between the two
participants. Once Bob has in his storage the key and the ciphered text, he sends the latter in a
new message back to Alice, who started the protocol and from whom he used the public key.
Alice then receives the ciphered text C from Bob and uses his secret key SK to perform Dec
function over C. Dec outputs ideally the original shared key generated by Bob that is contained
in C. In the last step, both participants securely shared a key K between them.

As we have seen, the network is elementary, and participant interaction is minimal. No
confirmation messages or any prior establishment to know where the participants are in
the network is performed. Such discovery and set-up work are assumed to have been done
previously.

Figure 1: High level view of the behaviour of Kyber between two honest participants, id est, Alice and
Bob.

Finally, about the used cryptography primitives of KeyGen, Enc and Dec we must remark that
there are two versions for each of them, as we will see in the next section. Recall that these
functions are treated as black boxes.

3.2. Security fundamentals

Let us now see why these primitives, which we have seen at a high level for key generation,
encryption and decryption, are resistant to the computational capacity of a quantum adversary.
Kyber is an IND-CCA2-secure key encapsulation mechanism (KEM) whose security is based on
the hardness of solving the learning-with-errors (LWE) problem over module lattices. Kyber
works with vectors and matrices of polynomials with various operations, such as concatenation,
transposition, product or other more complex ones such as hash and key derivation functions.
These operations can be seen in Fig. 3 and are present in the three main functions.

Here in Fig. 2, it should be noted that in KYBER.Dec(c,sk) when the sub-function
CPAPKE.Dec(c,s) occurs, the computed text m’ could not be the same as the one generated by
the other participant in KEM.Enc(pk) with sub-function CPAPKE.Enc(pk,m,r). This different
message m’ is a value close to m given the property isSmall(p) over a polynomial p. We say
that a polynomial p is small when its degree is lesser than a given number established by the
protocol. The close value m’ is then used to compute a new value, but also close, c’ which
is compared to the received c in a message. Depending on their equality, the construction of
the shared key will be different with the key derivation function (KDF). This differentiation of
values arise with low probability, but it states that encryption and decryption phases are not
error-prone.

Figure 2: Algorithms of Kyber Key Encapsulation Mechanism borrowed from [15].

Nevertheless, why are they different in the end? Well, here lies the strength of the scheme
against a quantum adversary. If we check the most internal functions, that is, the CPAPKE ones
shown in Fig. 3, we can see in algorithm CPAPKE.Enc that there are vector values such as e1
and 𝑒2 that have been sampled with a random seed r using function sampleCBD from a centered
binomial distribution. Such errors elevate the computational complexity of the scheme from
polynomial time (P) to non-polynomial time (NP), making it unsolvable by quantum computers
because of the randomness.

𝑋 ′ = 𝐷𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑞(𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑞(𝑋 , 1), 1) (1)

The error is tried to be eliminated by function Decompress𝑞 when extracting from the pair
of vectors 𝑐1 and 𝑐2 the vectors u and v respectively, at the middle of step CPAPKE.Dec. This
function has a property in combination with function Compress𝑞, which states in Eq. 1 that
decompressing the compress of a given value X with the same second parameters, gives a new
value X’ which is similar to the original compressed value. This property takes place while
computing Compress(v’-s𝑇u’,1).

It is important to mention that other operations take place such as generate, sampleCBD,
Compress, Decompress, encode and decode. These are necessary for the main three operations
we have described before but are not explained in detail in this paper because they are not
necessary for our understanding of the protocol. Full descriptions of these specific functions
are available at [30].

4. Maude specification

4.1. Assumptions

On the specification of the symbolic module for Kyber, we have taken the freedom to make some
assumptions about it. We can divide these assumptions into Dolev-Yao adversary assumptions
and Kyber-specification assumptions.

Figure 3: Internal algorithms of the Kyber Key Encapsulation Mechanism borrowed from [15].

We will start with the former one because we will be importing all of the characteristics the
Dolev-Yao adversary model states. This implies additional rules and conditions for our system
module. These new rules are explained in the following Section 4.2. We also assume that there
will be only three participants in the network, two of them honest (Alice and Bob) and one
adversary (Eve).

About Kyber, almost all assumptions are over mathematical and low-level concepts. Such
assumptions allow us to abstract our model from implementation requirements and focus on
representing the desired behaviour among the participants.

• All matrices are square matrices.
• All vectors are column vectors, and transposed vectors are row vectors.
• All vectors, which also represent polynomials, are considered to be of the necessary
degree to be considered small, thus fulfilling the property isSmall(p) explained in Section
3.2.

• We only consider for decompression function the ideal case where there is no error in
obtaining m, thus m’ will be equal to m.

• We assume that the deciphered message is the shared key between the participants, so
no additional functions, KDF in this case, need to be specified and then applied.

• Our sampling procedures are deterministic, but we will assume that the operators sampled
are from a CBD whenever it is the case.

4.2. Module composition

The symbolic model of Kyber is composed of various modules, precisely five functional modules
and one systemmodule. Functional modules are DATA-TYPES , KYBER-HASH-OPERATIONS , ENCRYPTION ,
KYBER-CPAPKE-KEYGEN and KYBER-CPAPKE-ENC . The system module representing the protocol is
KYBERV2 .

4.2.1. Functional modules

DATA-TYPES: About this functional module, we should remark on the importance of all
mathematical assumptions. Specifically, the three first assumptions found in the previous
section apply to this module. The module represents the low-level components of our symbolic
model toward the official specification. Here, we represent matrices and vectors and all their
associated operations. Vector operations as the concatenation, addition and subtraction of
vectors are declared and defined in this module. First, the concatenation of two vectors is a
new vector defined with the symbol || . On the one hand, vector sum is declared with symbol
v+ being commutative and associative with the identity element 0. On the other hand, the
subtraction of two vectors is defined with symbol v- as associative. Finally, we declared the dot
product as associative only.

Changing to matrices, we declared and defined the product operation between a matrix and
a vector, resulting in a new vector. The product of matrices and vectors is associative, and we
defined the following property over the dot product with the Eq. 2. Symbols V1 and V2 are
vectors, and M2 is a matrix.

(𝑀1 𝑚 ∗ 𝑉1) 𝑑𝑜𝑡 𝑉 2 = 𝑉1 𝑑𝑜𝑡 (𝑀1 𝑚 ∗ 𝑉2) (2)

The transpose function is defined for vectors and matrices. Their distributive properties
over operations such as product or addition of vectors and matrices are formalized in the Eq. 3.
Once again, the symbols are the same as in the previous equation, but now we specify two
distribution cases. The upper equation defines the distribution of the transpose of a vector over
the sum of vectors. The lower defines the distribution of the transpose of a vector over the
matrix-vector product.

𝑡𝑝𝑉 (𝑉 1 𝑣 + 𝑉 2) = 𝑡𝑝𝑉 (𝑉 1) 𝑣 + 𝑡𝑝𝑉 (𝑉 2)
𝑡𝑝𝑉 (𝑀1 𝑚 ∗ 𝑉1) = 𝑡𝑝𝑉 (𝑉 1) 𝑚 ∗ 𝑡𝑝𝑀(𝑀1) (3)

We also define in functional module DATA-TYPES the concept of Pair of vectors. We declare
and define functions first and second which receive a pair and return the first and second
elements respectively.

It is important to mention that, in this module, we define some constants for values used in
the protocol. Constants du and dv are used in the compression and decompression of u and v
respectively. These two constant values are non-zero natural numbers that take a specific value
depending on the version of Kyber they are used. For us, they are constants to represent such
value in a symbolic form. We also define three pairs of constants for Rho and Sigma in order to
be able to sample different values in future modules.

ENCRYPTION: This functional module is one of the most important of our symbolic model
because it specifies our equational theory to represent the compression and decompression
properties shown in Subsection 3.2. Equations available in Eq. 4 represent the property of
decompressing compressed content and vice versa. The commutativity of the given property
is necessary because the protocol applies Compress over Decompress, even if the property is
written otherwise in the mathematical explanation. Within these equations, X, V1 and V2 are
vectors, and N is a natural number different from zero.

eq (V1 v+ Decompress(X,N)) v- V2 = Decompress(X,N) .

Figure 4: Definition of the property to cancel the noise present in the component of a ciphered text c
in functional module ENCRYPTION.

ops Alice Eve Bob : -> Identifier .
op _[_]_ : Identifier Keys Content -> Principal .

Figure 5: Definition of a participant at the network in our system module KYBERV2.

𝐷𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝑋 , 𝑁), 𝑁) = 𝑋
𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝐷𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝑋 , 𝑁), 𝑁) = 𝑋 (4)

We also specify the property of noise cancellation that represents the ideal case where both
noises from u’ and v’ in the Eq. 5 are properly cancelled because of subtraction. The following
Fig. 4 shows how we modelled it so that when we have a compressed value and two vectors,
they cancel each other as the noise equation specified.

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(𝑣 ′ − 𝑠𝑇𝑢′, 1) (5)

4.2.2. System module

With our system module identified as KYBERV2, we try to model the behaviour of honest
participants and the capabilities the intruder has over the network. First, we will define
representations of elements in our model for participants, messages and the global state of
the system. Then participant behaviour is explained and finally we move to the definition of
intruder capabilities.

Element definitions: Participants in our model follow the operational definition shown in
Fig. 5. Here three identifiers are declared for our corresponding participants. Then the structure
of a participant is declared. A participant consists of an Identifier, like the ones that have
been defined, a group of keys the participant know, and a group of elements that represent its
elements that are not keys and the participant has in its possession, that is, in its memory.

Messages are defined by the operator 𝑚𝑠𝑔 shown in the code below. A message contains
information about two participant identifiers, the status of the message and the content it carries.
The first identifier indicates the source of the message, and the second is the identifier of the
participant to whom the message is delivered throw the network. Then, the status of a message
can take the values sentX, receivedX and interceptedX, where X can either be PK or C depending
on the step. At last, the content of the message is assumed to be secure, meaning a participant
can not infer any additional contents from it without the required information.

op msg{(_,_)[_]_} : Identifier Identifier MsgState Content -> Msg .

crl [KeyGen] : { ds(SAM1 CONT emptyS) CONT2 } < (ID1[emptyK]emptyC) PS >net(MSGS) =>
{ ds(CONT emptyS) CONT2 } < (ID1[publicKey(ID1,PK) ; secretKey(ID1,SK)]dI(ID1,SAM1)
emptyC) PS >net(MSGS)

if SK := sampleS(second(G(SAM1))) /\
PK := ((generateA(first(G(SAM1))) m* SK) v+ sampleE(second(G(SAM1)))) .

Figure 6: Definition of conditional rule KeyGen in our system module KYBERV2.

The definition of the structure representing our system can be seen in the code below. Here,
and from left to right, are specified the elements our rules will handle. At the right corner, we
assigned a field for all the available sample values, that is, constant values representing vector
values, to use them in Keygen and Enc functions. Then we have a pool of participants, following
each one the structure previously explained. Then, at the left end, we have the network, with a
pool for associative messages, representing a kind of record that lets participants work over the
sent messages.

op {_}<_>net(_) : Content Principals Msgs -> GlobalState .

Participant behaviour: Following the Kyber specification [30] and the Dolev-Yao assump-
tions, we specify the following rules in Maude to model how the protocol operates. All these
rules have been written to be as general as possible, making the model and the constructed
execution tree more realistic and compelling for model checking.

The first rule is KeyGen as can be seen in Fig. 6. This rule is the one that starts the protocol
for a given participant with identifier ID1 . The rule states that given a participant with identifier
ID1 whose content is empty both for the keys and memory, can generate a publicKey(ID1,PK)
and a secretKey(ID1,SK) in the group of keys. This is possible if there is a value SAM1 in the
sample group for d, which is stored in the content of the participant using the operator dI that
associate a sample value with a participant identifier. The construction of both keys, public and
secret, is done through the matching equations in the rule’s conditions. The structure is the
one present at the specification and can be seen in Fig. 3, where public key PK is the matrix A
multiplied by the secret key s plus a sampled error e. For the secret key s, we assumed it to be
just the sample value from the CBD, so no further operations are needed for its computation.

We also defined a rule SendPK that models the behaviour of a participant with his public key,
sending it to any other participant in the network different from him. The message is sent if it
has not been sent previously, so we avoid infinite execution.

Then, to complement the previous rule, we defined rule ReceivePK to process the last incoming
message if it contains a public key and has not been received yet. The reason to only check the
last message is to have some kind of history or log over the messages in the network.

Rule Enc as it is shown in Fig. 7 models the function with its same name. In order to apply
the encryption step, a participant first has to receive the public key from the other peer. The
participant also needs to be able to sample values for the message m to transmit and a random
’coin’ r which is a value used in sampling the errors 𝑒1 and 𝑒2. In application of the rule, the
participant possesses in the pool of keys a new shared key containing the value to be transmitted

crl [Enc] : { ms(SAM1 CONT1 emptyS) rs(SAM2 CONT2 emptyS) CONT3 } < (ID2[
publicKey(ID1,(M1 m* V1) v+ V2) ; KS2] CONT4) PS >net(MSGS) => { ms(CONT1 emptyS)
rs(CONT2 emptyS) CONT3 } < (ID2[sharedKey(ID1,SAM1) ; publicKey(ID1,(M1 m* V1) v+ V2)
; KS2]cI(ID2,C) mI(ID2,SAM1) rI(ID2,SAM2) CONT4) PS >net(MSGS)

if U := ((tpM(M1) m* sampleR’(SAM2)) v+ sampleE1(SAM2)) /\
V := (((tpV((M1 m* V1) v+ V2) dot sampleR’(SAM2)) v+ sampleE2(SAM2))
v+ Decompress(SAM1,1)) /\
C1 := Compress(U,du) /\ C2 := Compress(V,dv) /\ C := (C1,C2) /\ ID1 =/= ID2 .

Figure 7: Definition of conditional rule Enc in our system module KYBERV2.

crl [Dec] : { CONT } < (ID1[secretKey(ID1,SK) ; KS1]dI(ID1,SAM1) cI(ID2,C’) CONT1)
(ID3[KS2]cI(ID3,C’) mI(ID3,SAM2) rI(ID3,SAM3) CONT2) PS >net(MSGS) => { CONT } <
(ID1[secretKey(ID1,SK) ; sharedKey(ID2,K1) ; KS1]dI(ID1,SAM1) CONT1)
(ID3[KS2]cI(ID3,C’) mI(ID3,SAM2) rI(ID3,SAM3) CONT2) PS >net(MSGS)

if SK := sampleS(second(G(SAM1))) /\
PK := ((generateA(first(G(SAM1))) m* SK) v+ sampleE(second(G(SAM1)))) /\
U := ((tpM(generateA(first(G(SAM1)))) m* sampleR’(SAM3)) v+ sampleE1(SAM3)) /\
V := (((tpV(PK) dot sampleR’(SAM3)) v+ sampleE2(SAM3)) v+ Decompress(SAM2,1)) /\
C1 := Compress(U,du) /\ C2 := Compress(V,dv) /\ C := (C1,C2) /\
U’ := Decompress(first(C),du) /\ V’ := Decompress(second(C),dv) /\
K1 := Compress(V’ v- tpV(SK) dot U’,1) /\ ID1 =/= ID2 .

Figure 8: Definition of conditional rule Dec in our system module KYBERV2.

securely to the other participant. In the content pool, the ciphered text containing such a shared
value is stored for later. As in KeyGen rule, the conditions of it are used to construct the needed
cryptography elements, in this case a ciphered text c consisting of a pair of ciphered texts 𝑐1
and 𝑐2. Both elements are specified following the operations in Fig. 3.

The counterpart of SendPK but for a ciphered text c obtained in Enc is the conditional rule
SendCiph. It checks similar conditions when sending the public key, so no infinite execution
happens.

Then, the rule to receive a ciphered text, behaves similarly to its counterpart, that is, ReceivePk.
The rule applies when there is a sent message in the network for a given participant with ID1.
The content of the message is stored by the participant in its pool of content, acting as memory.
As with its counterpart ReceivePK, our rule only checks the last sent message on the network
for modelling reasons.

Finally, the rule to decipher the received cryptogram is Dec. In Fig. 8 we can see that the
computation V’ v- tpV(SK) dot U’ is performed as is specified in Section 3.2. This operation
cancels the noise U’ and V’ have, leaving alone Decompress(SAM1,1) so it can be extracted SAM1
when Compress is applied, obtaining the shared key K1.

Intruder behaviour: When specifying the intruder’s capabilities over our module, we de-
cided to specify two rules, Intercept1 and Intercept2.

crl [Intercept1] : { CONT } < (Eve[publicKey(Eve,PK) ; KS1]CONT1) (Alice[publicKey(Alice,PK’)
; KS2]CONT2) PS >net(MSGS msg{(Alice,Bob)[sentPK]PK’}) => { CONT } < (Eve[publicKey(Eve,PK) ;
publicKey(Alice,PK’) ; KS1]CONT1) (Alice[publicKey(Alice,PK’) ; KS2]CONT2) PS >
net(MSGS msg{(Alice,Bob)[interceptedPK]PK’} msg{(Alice,Bob)[sentPK]PK})

if (msg{(Alice,Bob)[interceptedPK]PK’}) in MSGS == false .

Figure 9: Definition of conditional rule Intercept1 in our system module KYBERV2.

crl [Intercept2] : { CONT } < (Eve[publicKey(Eve,PK) ; KS1]cI(Eve,C’) CONT1) PS >net(MSGS
msg{(Bob,Alice)[sentC]C}) => { CONT } < (Eve[publicKey(Eve,PK) ; KS1]cI(Eve,C’)
cI(Bob,C) CONT1) PS >net(MSGS msg{(Bob,Alice)[interceptedC]C} msg{(Bob,Alice)[sentC]C’})

if (msg{(Bob,Alice)[interceptedC]C}) in MSGS == false /\ C =/= C’ .

Figure 10: Definition of conditional rule Intercept2 in our system module KYBERV2.

The former can be seen in Fig. 9, and it binds the intruder with the ability to intercept a
sent message containing a public key. The intercepted message is marked with a new status
representing its deceased ability to be received. The intruder also places a newmessage identical
to the previous one but with his public key as content. This change makes the receiver think
the public key received is from the sender when it is not, thus beginning the man-in-the-middle
attack.

The latter is available in Fig. 10 and makes the intruder intercept a message sent with a
ciphered text. This intercepted message is sent by the receiver from the previous fake message
and makes Eve send a new message but with his own ciphered text. In this way, Eve has in store
two ciphered texts, his own and the one intercepted.

5. Maude verification

5.1. Reachability verification

We will verify, using the search command, if the model behaves as expected, which means
checking if states of interest exist. For that goal we conduct reachability analysis from two
initial states, init1 and init2 , both available in Fig. 11. The initial state init1 defines our global
state with three types of samples, each with a value available for sampling. It also specifies that
three participants populate the network, and the network of messages is initially empty. The
other initial state init2 is the same as the first but with the difference that there is one more
sample value for each of the possible samples of ds , ms and rs .

For each of these initial states, we checked two things:

• If there exists a state where two participants have successfully shared a key. It is achieved
with the command: search initX =>* True . , where initX is one of the initial states
and True is a constant value, obtained through application of rule Comp seen below.
This constant of sort global state represents that two participants have succeeded in the
application of the protocol, hence they have shared a key.

eq init1 = {ds(d1 emptyS) ms(m1 emptyS) rs(r1 emptyS)} < (Alice[emptyK]emptyC)
(Eve[emptyK]emptyC) (Bob[emptyK]emptyC) >net(emptyM) .

eq init2 = {ds(d1 d2 emptyS) ms(m1 m2 emptyS) rs(r1 r2 emptyS)} < (Alice[emptyK]emptyC)
(Eve[emptyK]emptyC) (Bob[emptyK]emptyC) >net(emptyM) .

Figure 11: Definition of two initial states for our system module KYBERV2 in Maude.

search initX =>* { CONT } < (ID1[sharedKey(ID3,K1) ; KS1]CONT1) (ID2[sharedKey(ID1,K1) ;
sharedKey(ID3,K2) ; KS2]CONT2) (ID3[sharedKey(ID1,K2) ; KS3]CONT3) >net(MSGS) .

Figure 12: Command template for a man-in-the-middle attack search in Maude.

• If a state exists in the state space tree in which a man-in-the-middle attack has happened.
It is achieved with the command in Fig. 12, where the final state specifies that there are
three participants in the global state, and the shared key between ID1 and ID2 is the same,
and a key has been shared between ID2 and ID3 . The trick here is that ID1 and ID3 think
they have shared the same key, thus resulting in a man-in-the-middle attack.

rl [Comp] : { CONT } < (ID1[sharedKey(ID2,K1) ; KS1]CONT1)
(ID2[sharedKey(ID1,K1) ; KS2]CONT2) PS >net(MSGS) => True .

On the first initial state, the result of applying the first search commands is that there is a
state where two participants have shared a key, meaning the protocol works. Moreover, the
second search does not find a solution, stating that no man-in-the-middle attack is found when
there are only sufficient sample values for one key exchange of the protocol.

Regarding the second initial state the results of both search commands are quite interesting.
As well as in the first state, state two lets two participants share a key securely between them,
but with the second search, a man-in-the-middle attack is found. The second search returns
multiple solutions given the model’s different possibilities in message passing, but we show
only the first solution. This solution states that two honest participants, Alice and Bob have
shared keys for each of them that are different, and the values match with the ones the third
participant, the intruder Eve, has in his possession. So when Alice or Bob try to use those secret
keys to communicate with each other, they will indeed be sending messages to Eve thinking it
is the other honest participant. We can also see in the message section that some of them have
been intercepted by Eve.

5.2. Formal verification

5.2.1. Predicates

In order to use model checking in Maude, one needs two things: a system module representing
the system and some predicates to define the properties of our system. The system module has
already been defined and tested, and in this subsection, we dive into the three predicates we
have specified.

Predicate wantsToShareKey is defined so it is true in a global state where a participant with
identifier ID1 has his own public key, meaning he has performed KeyGen step, and there is a
message to another participant, with identifier ID2, different than him. This predicate represents
a participant wanting to share a key with another. In other words, it is the start of the protocol
Kyber.

eq { CONT } < (ID1[publicKey(ID1,PK) ; KS1]CONT1) (ID2[KS2]CONT2) PS >
net(MSGS msg{(ID1,ID2)[sentPK]PK}) |= wantsToShareKey(ID1,ID2) = true .

Predicate sharedAKeyWith is defined so it is true when two participants hold the same shared
key for the other one. This predicate represents the end of the protocol, fulfilling the previous
predicate in which the protocol was started.

eq { CONT } < (ID1[sharedKey(ID2,K1) ; KS1]CONT1) (ID2[sharedKey(ID1,K1) ; KS2]CONT2)
PS >net(MSGS) |= sharedAKeyWith(ID1,ID2) = true .

Finally, the last predicate stolenSecret is defined to state that a secret key has been stolen
from a participant if it exists in the pool of keys of a different participant.

eq { CONT } < (ID1[secretKey(ID1,SK) ; KS1]CONT1) (ID2[secretKey(ID1,SK) ; KS2]CONT2)
PS >net(MSGS) |= stolenSecret(ID1,ID2) = true .

5.2.2. Properties

With the predicates defined, we now specify two properties. One checks the fairness of our
protocol, and the other has to do with its security. These properties are LTL formulas that
allow us to explore the execution tree in search of counterexamples that do not satisfy the
formulas, thus proving the property does not hold. If no counterexample is found, we can say
with assurance that the symbolic model satisfies the given property.

The first property, FAIRNESS, has to do with the assurance that once a participant wants to
share a key with another participant, both in the end agree on one. It can be noted that the
property is written for only the case when the participants are Alice and Bob, that is, the honest
parts of the network.

The second property, SECURITY, has to do with the assurance that the predicate of stolenSecret
is true in any future state. In other words, no participant learns the secret key of another one.
Note that the property is only specified for the case when the secret key is from Alice and the
thief is Eve.

5.2.3. Results

About the execution of our LTL formulas, we have applied both over our two initial states:
init1 and init2 . The results are that both initial states accomplish the fairness property when
Alice and Bob want to share a key. We can also conclude that the security of the secret key only
to be known by its owner is assured thanks to the model checker not finding any state where
secretStolen holds when Alice is the key holder and Eve the thief.

6. Conclusion

In this paper, we have proven the presence of a man-in-the-middle attack on the key encapsula-
tion mechanism Kyber given Dolev-Yao adversary assumptions. Moreover, two LTL formulas
specifying both fairness and security properties have been applied with Maude’s LTL Logical
Model Checker to extend our model’s verification. Our results on a symbolic model that repre-
sents Kyber prove that its last version is not safe from classical adversaries if no authentication
is available or defined, thus breaking the scheme. Finally, with this new symbolic model, we
have provided a new approximation to represent the system different from [15]. We also have
provided and applied a new analysis approach using the model checker, thus extending the
reachability analysis made by [15].

For future work, we plan to improve the model by conducting extended model checking to
verify its complete correctness. We also want to extend the model to represent the key encapsu-
lation mechanism better. In the future, there could even be the possibility to specify multiple
layers of protocols and check the interaction between them. For example, add capabilities of
authentication or signatures to Kyber and perform the analyses we have made, in this paper, to
check if the results are the same. We could also extend the system representation to use the
objects feature from Maude, so it is closer to other languages and even more understandable for
non-experts in formal methods. We are also considering using protocol analysis tools, such as
Maude-NPA, to specify the protocol and check its security in a more thoughtful analysis form
of the system. These new tools will also let us check if an attack is present for an unbounded
number of sessions.

References

[1] P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in:
Proceedings 35th annual symposium on foundations of computer science, IEEE, 1994, pp.
124–134.

[2] M. Grassl, B. Langenberg, M. Roetteler, R. Steinwandt, Applying grover’s algorithm to aes:
quantum resource estimates, in: Post-Quantum Cryptography, Springer, 2016, pp. 29–43.

[3] B. Blanchet, Security protocol verification: Symbolic and computational models, in:
International Conference on Principles of Security and Trust, Springer, 2012, pp. 3–29.

[4] V. Cortier, S. Kremer, B. Warinschi, A survey of symbolic methods in computational
analysis of cryptographic systems, Journal of Automated Reasoning 46 (2011) 225–259.

[5] M. Abadi, P. Rogaway, Reconciling two views of cryptography (the computational sound-
ness of formal encryption), Journal of cryptology 15 (2002) 103–127.

[6] S.-L. Gazdag, S. Grundner-Culemann, T. Guggemos, T. Heider, D. Loebenberger, A formal
analysis of IKEv2’s post-quantum extension, in: Annual Computer Security Applications
Conference, 2021, pp. 91–105.

[7] A. Hülsing, K.-C. Ning, P. Schwabe, F. Weber, P. R. Zimmermann, Post-quantum wireguard,
in: 2021 IEEE Symposium on Security and Privacy (SP), IEEE, 2021, pp. 304–321.

[8] S. Escobar, C. Meadows, J. Meseguer, Maude-NPA: Cryptographic protocol analysis modulo

equational properties, in: Foundations of Security Analysis and Design V, Springer, 2009,
pp. 1–50.

[9] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, C. Talcott, All About
Maude-A High-Performance Logical Framework: How to Specify, Program, and Verify
Systems in Rewriting Logic, volume 4350, Springer, 2007.

[10] B. Blanchet, B. Smyth, V. Cheval, M. Sylvestre, Proverif 2.00: automatic cryptographic
protocol verifier, user manual and tutorial, Version from (2018) 05–16.

[11] S. Meier, B. Schmidt, C. Cremers, D. Basin, The tamarin prover for the symbolic analysis of
security protocols, in: International conference on computer aided verification, Springer,
2013, pp. 696–701.

[12] C. J. Cremers, The scyther tool: Verification, falsification, and analysis of security protocols,
in: International conference on computer aided verification, Springer, 2008, pp. 414–418.

[13] J. Ramsdell, J. Guttman, CPSA4: A cryptographic protocol shapes analyzer, https://github.
com/mitre/cpsaexp, 2018.

[14] V. Cheval, S. Kremer, I. Rakotonirina, The DEEPSEC prover, in: International Conference
on Computer Aided Verification, Springer, 2018, pp. 28–36.

[15] D. D. Tran, K. Ogata, S. Escobar, S. Akleylek, A. Otmani, Formal specification and model
checking of lattice-based key encapsulation mechanisms in Maude, in: Rewriting Logic
and its Applications 14th International Workshop, WRLA 2022, 2022, p. 26.

[16] D. D. Tran, K. Ogata, S. Escobar, S. Akleylek, A. Otmani, Formal specification and model
checking of saber lattice-based key encapsulation mechanism in Maude, in: Proceedings of
the 34th International Conference on Software Engineering and Knowledge Engineering,
2022.

[17] D. Dolev, A. Yao, On the security of public key protocols, IEEE Transactions on information
theory 29 (1983) 198–208.

[18] J. Meseguer, Conditional rewriting logic as a unified model of concurrency, Theoretical
Computer Science 96 (1992) 73–155.

[19] M.-O. Stehr, J. Meseguer, P. C. Ölveczky, Rewriting logic as a unifying framework for petri
nets, in: Unifying Petri Nets, Springer, 2001, pp. 250–303.

[20] N. Martí-Oliet, J. A. Verdejo-López, Implementing CCS in Maude, in: Actas de las VIII
Jornadas de Concurrencia: Cuenca, 14 a 16 de junio de 2000, Universidad de Castilla-La
Mancha, 2000, pp. 81–96.

[21] J. Meseguer, A logical theory of concurrent objects and its realization in the Maude
language, in: G. Agha, P. Wegner, A. Yonezawa (Eds.), Research Directions in Concurrent
Object-Oriented Programming, MIT Press, 1993, pp. 314–390.

[22] M. Katelman, S. Keller, J. Meseguer, Rewriting semantics of production rule sets, Journal
of Logic and Algebraic Programming 81 (2012) 929–956.

[23] S. Liu, P. C. Ölveczky, J. Meseguer, Modeling and analyzing mobile ad hoc networks in
Real-Time Maude, Journal of Logical and Algebraic Methods in Programming (2015).

[24] R. Bobba, J. Grov, I. Gupta, S. Liu, J. Meseguer, P. Ölveczky, S. Skeirik, Design, Formal
Modeling, and Validation of Cloud Storage Systems using Maude, in: R. H. Campbell, C. A.
Kamhoua, K. A. Kwiat (Eds.), Assured Cloud Computing, J. Wiley, 2018, pp. 10–48.

[25] S. Chen, J. Meseguer, R. Sasse, H. J. Wang, Y.-M. Wang, A systematic approach to uncover
security flaws in gui logic, in: 2007 IEEE Symposium on Security and Privacy (SP’07),

https://github.com/mitre/cpsaexp
https://github.com/mitre/cpsaexp

IEEE, 2007, pp. 71–85.
[26] J. Meseguer, G. Roșu, The rewriting logic semantics project, Theoretical Computer Science

373 (2007) 213–237.
[27] K. Bae, J. Meseguer, P. C. Ölveczky, Formal patterns for multirate distributed real-time

systems, Science of Computer Programming 91 (2014) 3–44.
[28] S. Eker, M. Knapp, K. Laderoute, P. Lincoln, J. Meseguer, K. Sonmez, Pathway logic:

Symbolic analysis of biological signaling, in: Biocomputing 2002, World Scientific, 2001,
pp. 400–412.

[29] C. Talcott, S. Eker, M. Knapp, P. Lincoln, K. Laderoute, Pathway logic modeling of protein
functional domains in signal transduction, in: Biocomputing 2004, World Scientific, 2003,
pp. 568–580.

[30] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe,
G. Seiler, D. Stehlé, Crystals-kyber algorithm specifications and supporting documentation,
NIST PQC Round 2 (2019).

	1 Introduction
	2 Preliminaries
	2.1 Dolev-Yao adversary model
	2.2 Maude

	3 Key Encapsulation Mechanism KYBER
	3.1 Behaviour
	3.2 Security fundamentals

	4 Maude specification
	4.1 Assumptions
	4.2 Module composition
	4.2.1 Functional modules
	4.2.2 System module

	5 Maude verification
	5.1 Reachability verification
	5.2 Formal verification
	5.2.1 Predicates
	5.2.2 Properties
	5.2.3 Results

	6 Conclusion

