Formal specification and model checking of lattice-based key encapsulation mechanisms in Maude

Duong Dinh Tran¹, Kazuhiro Ogata¹, Santiago Escobar², Sedat Akleylek³ and Ayoub Otmani4
${ }^{1}$ Japan Advanced Institute of Science and Technology (JAIST), Ishikawa, Japan
${ }^{2}$ VRAIN, Universitat Politècnica de València, Valencia, Spain
${ }^{3}$ Ondokuz Mayis University, Turkey
4University of Roven Normandie, France

International Workshop on Formal Analysis and Verification of Post-Quantum Cryptographic Protocols 2022

October 24, 2022

Overview

- Motivation
- Key encapsulation mechanism and Kyber
- Modeling Kyber in Maude
- The property and the counterexample
- Summary

Motivation

- Shor algorithm can efficiently solve hard mathematical problems on which the current public-key cryptography is relying.
- Sufficient large-scale quantum computers can efficiently "break" the current public-key algorithms, such as RSA, Diffie-Hellman.
\rightarrow A threat: Lots of sensitive information transmitted over the Internet, such as emails, passwords, credit card numbers will not be secure anymore.
- Large numbers of post-quantum Key Encapsulation Mechanisms (KEMs) have been proposed to provide secure key establishment.
\rightarrow Formal specification and model checking lattice-based KEMs

Key Encapsulation Mechanism (KEM)

A KEM is a tuple of algorithms (keygen, encaps, decaps):

1. $(s k, p k) \leftarrow k e y g e n()$: outputs a public key $p k$ and a secret key sk.
2. $(K, C) \leftarrow \operatorname{encaps}(p k)$: takes the public key $p k$, and outputs a ciphertext C and a shared secret key K.
3. $K \leftarrow \operatorname{decaps}(s k, C)$: takes the secret key $s k$, a ciphertext C and outputs the shared secret key K.

$$
\begin{array}{ccc}
\text { Alice } & & \text { Bob } \\
(s k, p k) \leftarrow \text { keygen }() & \stackrel{p k}{ } & \begin{array}{c}
\\
K \leftarrow \operatorname{decaps}(s k, C)
\end{array} \\
\hline C, C) \leftarrow \operatorname{encaps}(p k)
\end{array}
$$

Kyber KEM

```
    KEM.KeyGen()
z}\leftarrow\mp@subsup{B}{}{32
(pk,sk') = PKE.KeyGen()
sk=(sk'|pk|H(pk)|z)
return (pk,sk)
KEM.Dec(c,sk)
m'}=\mathrm{ PKE. Dec(s,c)
(\mp@subsup{\overline{K}}{}{\prime},\mp@subsup{\overline{r}}{}{\prime})=G(\mp@subsup{m}{}{\prime}|H(pk))
c
if c=\mp@subsup{c}{}{\prime}}\mathrm{ then }K=KDF(\mp@subsup{\overline{K}}{}{\prime}|H(c)
else return K=KDF(z|H(\mp@subsup{c}{}{\prime}))
return K
```

KEM.Enc $(p k)$

$$
\begin{aligned}
& m_{0} \leftarrow B^{32} ; m \leftarrow H\left(m_{0}\right) \\
& (\bar{K}, \bar{r})=G(m \| H(p k)) \\
& c=\operatorname{PKE.Enc}(p k, m, \bar{r}) \\
& K=K D F(\bar{K} \| H(c)) \\
& \text { return }(K, c)
\end{aligned}
$$

$\triangleright H, G$: hash functions
$\triangleright B^{32}$: the set of 32-length byte arrays
$\triangleright K D F$: key derive function
\triangleright bold lower(upper)-case: vectors (matrices)

Kyber
 KEM.KeyGen()
 $z \leftarrow B^{32}$
 $\left(p k, s k^{\prime}\right)=$ PKE.KeyGen() $s k=\left(s k^{\prime}\|p k\| H(p k) \| z\right)$ return ($p k, s k$)

PKE.KeyGen()
$d \leftarrow B^{32}$
$(\rho, \sigma)=G(d)$
$\boldsymbol{A} \in R_{q}^{k \times k}:$ generated from ρ
$\boldsymbol{s} \in R_{q}^{k}:$ sampled from σ
$\boldsymbol{e} \in R_{q}^{k}:$ sampled from σ
$\boldsymbol{t}=\boldsymbol{A} \boldsymbol{s}+\boldsymbol{e}$
return $(p k:=\boldsymbol{t}\| \| \rho, s k:=\boldsymbol{s})$

 PKE.KeyGen()
 $(\rho, \sigma)=G(d)$
$\boldsymbol{A} \in R_{q}^{k \times k}:$ generated from ρ
$\boldsymbol{s} \in R_{q}^{k}$: sampled from σ
$\boldsymbol{e} \in R_{q}^{k}$: sampled from σ
$\boldsymbol{t}=\boldsymbol{A} \boldsymbol{s}+\boldsymbol{e}$
return $(p k:=\boldsymbol{t}| | \rho, s k:=\boldsymbol{s})$

KEM.Dec $(c, s k)$
$m=\operatorname{PKE} \cdot \operatorname{Dec}(\boldsymbol{s}, c)$
$\left(\bar{K}^{\prime}, \bar{r}^{\prime}\right)=G\left(m^{\prime} \| H(p k)\right)$
$c^{\prime}=\operatorname{PKE} \cdot \operatorname{Enc}\left(p k, m^{\prime}, \bar{r}^{\prime}\right)$
if $c=c^{\prime}$ then $K=\operatorname{KDF}\left(\bar{K}^{\prime} \| H(c)\right)$ else return $K=K D F\left(z \| H\left(c^{\prime}\right)\right)$ return K

KEM.Enc $(p k)$

$$
\begin{aligned}
& m_{0} \leftarrow B^{32} ; m \leftarrow H\left(m_{0}\right) \\
& (\bar{K}, \bar{r})=G(m \| H(p k)) \\
& c=\operatorname{PKE.Enc}(p k, m, \bar{r}) \\
& K=K D F(\bar{K}| | H(c)) \\
& \text { return }(K, c)
\end{aligned}
$$

$\triangleright R_{q}$: the quotient polynomial ring $Z_{q}[X] /\left(X^{n}+1\right)$
$\triangleright R_{q}^{k}$: k-dimension vectors of R_{q}
\triangleright bold lower(upper)-case: vectors (matrices)

Kyber

$$
\begin{aligned}
& \text { KEM.KeyGen() } \\
& z \leftarrow B^{32} \\
& \left(p k, s k^{\prime}\right)=\text { PKE.KeyGen() } \\
& s k=\left(s k^{\prime}\|p k\| H(p k) \| z\right) \\
& \text { return (} p k, s k \text {) } \\
& \text { KEM.Dec(c,sk) } \\
& \stackrel{c}{ } \\
& m=\operatorname{PKE} \cdot \operatorname{Dec}(\boldsymbol{s}, c) \\
& \left(\bar{K}^{\prime}, \bar{r}^{\prime}\right)=G\left(m^{\prime} \| H(p k)\right) \\
& c^{\prime}=\operatorname{PKE} . \operatorname{Enc}\left(p k, m^{\prime}, \bar{r}^{\prime}\right) \\
& \text { if } c=c^{\prime} \text { then } K=K D F\left(\bar{K}^{\prime} \| H(c)\right) \\
& \text { else return } K=K D F\left(z \| H\left(c^{\prime}\right)\right) \\
& \text { return } K \\
& \triangleright x \in \mathbb{Z}_{q} ; d<\text { Celling }\left[\log _{2} q\right] \\
& \triangleright \operatorname{Compress}(x, d)=\text { Round }\left[\frac{2^{d}}{q} x\right] \bmod 2^{d} \\
& \triangleright \text { Decompress }(x, d)=\text { Round }\left[\frac{q}{2^{d}} x\right] \\
& \text { KEM.Enc }(p k:=\boldsymbol{t} \| \rho) \\
& m_{0} \leftarrow B^{32} ; m \leftarrow H\left(m_{0}\right) \\
& (\bar{K}, \bar{r})=G(m \| H(p k)) \\
& c=\operatorname{PKE} \cdot \operatorname{Enc}(p k, m, \bar{r}) \\
& K=K D F(\bar{K} \| H(c)) \\
& \text { return (} K, c \text {) } \\
& \text { PKE.Enc(} p k:=\boldsymbol{t} \| \rho, m, \bar{r}) \\
& \boldsymbol{A} \in R_{q}^{k \times k}: \text { re-generated from } \rho \\
& r \in R_{q}^{k} \text { : sampled from } \bar{r} \\
& \boldsymbol{e}_{\boldsymbol{1}} \in R_{q}^{k} \text { : sampled from } \bar{r} \\
& e_{2} \in R_{q} \text { : sampled from } \bar{r} \\
& \boldsymbol{u}=\boldsymbol{A}^{T} \boldsymbol{r}+\boldsymbol{e}_{\mathbf{1}} \\
& v=\boldsymbol{t}^{T} \boldsymbol{r}+e_{2}+\operatorname{Decompress}(m, 1) \\
& c_{1}=\operatorname{Compress}\left(\boldsymbol{u}, d_{u}\right) \\
& c_{2}=\operatorname{Compress}\left(v, d_{v}\right) \\
& \text { return } c:=\left(c_{1}| | c_{2}\right)
\end{aligned}
$$

Kyber

KEM.KeyGen()				
$\left(p k, s k^{\prime}\right)=$ PKE.KeyGen()				
return $(p k, s k)$	E			
	c	$\begin{aligned} & m_{0} \leftarrow B^{32} ; m \\ & (\bar{K}, \bar{r})=G(m \\| l \end{aligned}$		
		$c=$ PKE.Enc $p k$		
		$K=K D F(\bar{K} \\| H$		
KEM.Dec ($\left.c:=c_{1} \\| c_{2}, s k\right)$		return (K, c)		
$m^{\prime}=\operatorname{PKE} \cdot \operatorname{Dec}(s, c)$ を				
$\left(\bar{K}^{\prime}, \bar{r}^{\prime}\right)=G\left(m^{\prime} \\| H(p k)\right)$				
$c^{\prime}=\mathrm{PKE} \cdot \operatorname{Enc}\left(p k, m^{\prime}, \bar{r}^{\prime}\right)$				
if $c=c^{\prime}$ then $K=K D F\left(K^{\prime}\| \| H(c)\right)$ else return $K=K D F\left(z \\| H\left(c^{\prime}\right)\right)$	PKE.Dec($\left.\boldsymbol{s}, \mathrm{c}:=c_{1} \\| c_{2}\right)$			
	$\boldsymbol{u}=$ Decompress $\left(c_{1}, d_{u}\right)$			
else return $K=K D F\left(z \\| H\left(c^{\prime}\right)\right)$return K	$v=$ Decompress $\left(c_{2}, d_{v}\right)$			
	$m^{\prime}:=\operatorname{Compress}\left(v-\boldsymbol{s}^{T} \boldsymbol{u}, 1\right)$			
	return m^{\prime}			

KEM.Enc $(p k:=\boldsymbol{t}| | \rho)$

$$
m_{0} \leftarrow B^{32} ; m \leftarrow H\left(m_{0}\right)
$$

$$
(\bar{K}, \bar{r})=G(m \| H(p k))
$$

$$
c=\operatorname{PKE} \cdot \operatorname{Enc}(p k, m, \bar{r})
$$

$$
K=K D F(\bar{K} \| H(c))
$$

return (K, c)

Formal specification: polynomials

```
fmod POLYNOMIAL is
    pr INT . sort Poly . subsort Int < Poly .
    op _p+_ : Poly Poly -> Poly [ctor assoc comm prec 33] .
    op _p*_ : Poly Poly -> Poly [ctor assoc comm prec 31] .
    op _p-_ : Poly Poly -> Poly [prec 33] .
    op neg_ : Poly -> Poly [ctor] .
    vars P0 P1 P2 P3 : Poly.
    eq P1 p+0=P1. eq P1 p* 0=0.
    eq P1 p* 1 = P1 .
    eq P1 p* (P2 p+ P3) = (P1 p* P2) p+ (P1 p* P3).
    eq P1 p- P2 = P1 p+ neg(P2).
    eq P1 p+neg(P1) = 0 .
    eq neg(neg(P1)) = P1 .
    eq neg(P1 p+P2) = neg(P1) p+ neg(P2) .
endfm
```

--- addition
--- multiplication
--- subtraction
--- negation

Formal specification: name-value pairs

Each state is modeled as an AC-collection of the following name-value pairs:

- (prins : ps) - principals participating in the protocol;
- (nw : msgs) - AC-collection of messages exchange;
- (d[i]: $\left.d_{0}\right)-d_{0}$ is the random seed d (used in PKE.KeyGen()) of principal i;
- (rd-d : $r d d s$) - list of fresh values for the random seed d, i.e., an entry in $r d d s$ is extracted when a principal needs to generate a random value of d;
- ...

The initial state is defined as:

```
eq init =
    {(prins: (alice bob eve)) (d[alice]: 0) (d[bob]: 0) (nw: empty) (rd-d: (d1 , d2)) ... } .
```

Three rewrite rules keygen, encaps, and decaps are defined specifying the three corresponding Kyber KEM algorithms.

Formal specification: honest parties


```
crl [keygen] : {(rd-d: (D, PoL)) (d[A]: P1) (prins: (A B PS)) (nw: MS) Ocs }
=> {(rd-d: PoL) (d[A]: D) (prins:(A B PS))
    (nw: (msg1(A, A, B, sample-A(Rho) m* sample-s(Sig) v+ sample-e(Sig),
        Rho, sent) MS)) OCs }
if Rho := 1st(G(D)) \ Sig := 2nd(G(D)).
```

 \(\begin{array}{ccc}\text { sample-A(Rho) } \mathrm{m}^{*} \text { sample-s(Sig) } \mathrm{v}+\text { sample-e(Sig) } \longleftrightarrow \boldsymbol{A s}+\boldsymbol{e} \\ \boldsymbol{A} \in R_{q}^{k \times k} & \boldsymbol{s} \in R_{q}^{k} & \boldsymbol{e} \in R_{q}^{k}\end{array}\)

Formal specification: attacker model

We use the standard Dolev-Yao intruder model, that is a generic intruder, namely eve, can completely control the network. In particular, the intruder can:

- intercept any message and glean the data sent in that message, such as the values of $\boldsymbol{t}, \rho, c_{1}$, and c_{2};
- randomly choose their private/random values, such as d and m, then build by themself $\boldsymbol{s}, \boldsymbol{e}, \boldsymbol{r}, \boldsymbol{e}_{1}$, and e_{2};
- use such information above to fake some messages, impersonate some honest parties to send the messages to some other ones.

Formal specification: intruder capabilities

5 rewrite rules specify the intruder capabilities:

- keygen-eve: intruder intercepts a $1^{\text {st }}$ message sent from $A \rightarrow B$, fakes and sends a new $1^{\text {st }}$ message to B.
- encaps-eve: after intercepting the $1^{\text {st }}$ message sent from $A \rightarrow B$, intruder fakes and sends a $2^{\text {nd }}$ message to A, and computes a shared secret key with A.
- decaps-eve : intruder intercepts a $2^{\text {nd }}$ message replied from $B \rightarrow A$, and computes a shared secret key with B.
- build-ds: intruder builds the random d.
- build-ms: intruder builds the random m_{0}.

Formal specification: intruder capabilities

When there exists a message msg1 sent from A to B in the network, the intruder can intercept that message, fake a new message, and send it to B :

```
crl [keygen-eve] :
    {(ds: (D PoC1)) (nw: (msg1(A, A, B, TA, RhoA, sent) MS)) OCs}
=> {(ds: (D PoC1)) (nw: (msg1(A, A, B, TA, RhoA, intercepted)
    msg1(eve, A, B, sample-A(Rho) m* sample-s(Sig) v+ sample-e(Sig),
            Rho, sent) MS)) OCs}
if Rho := 1st(G(D)) /\ Sig := 2nd(G(D)).
```

For the random seed D , the intruder can only construct it by randomly choosing a fresh value:

```
rl [build-ds] :
    {(rd-d: (D, PoL)) (ds: PoC1) OCs}
=> {(rd-d: PoL) (ds:(PoC1 D)) OCs}.
```


Kyber - MITM attack

```
search [1] in KYBER :
init =>* {(keys[alice]: key(K1,bob)) (keys[bob]: key(K2,alice))
    (glean-keys: (key(K1,alice) key(K2,bob) KS))
    OCs}.
```

- (keys[alice]: key(K1,bob)) : key that Alice obtained after she communicated (in her belief) with Bob,
- (keys[bob]: key(K2,alice)) : key that Bob obtained after he communicated (in his belief) with Alice,
- (glean-keys: (key(Kı,alice) key(K2,bob) KS)) : collection of keys gleaned by intruder.

Kyber - MITM attack

Alice

$$
\begin{aligned}
& d \leftarrow B^{32} \\
& (\rho, \sigma)=G(d) \\
& \boldsymbol{A} \leftarrow \rho ; \boldsymbol{s}, \boldsymbol{e} \leftarrow \sigma \\
& t=A s+e \\
& \xrightarrow{p k:=\boldsymbol{t} \| \rho} \quad \begin{array}{l}
d^{\prime} \leftarrow B^{32} \\
\left(\rho^{\prime}, \sigma^{\prime}\right)=G\left(d^{\prime}\right)
\end{array} \\
& \boldsymbol{A}^{\prime} \leftarrow \rho^{\prime} ; \boldsymbol{s}^{\prime}, \boldsymbol{e}^{\prime} \leftarrow \sigma^{\prime} \\
& \boldsymbol{t}^{\prime}=\boldsymbol{A}^{\prime} \boldsymbol{s}^{\prime}+\boldsymbol{e}^{\prime} \quad \xrightarrow{p k^{\prime}:=\boldsymbol{t}^{\prime} \| \rho^{\prime}} \\
& m_{0} \leftarrow B^{32} ; m=H\left(m_{0}\right) \\
& (\bar{K}, \bar{r})=G\left(m \| H\left(p k^{\prime}\right)\right) \\
& c=\operatorname{PKE} \cdot \operatorname{Enc}\left(p k^{\prime}, m, \bar{r}\right) \\
& \text { C } \\
& K_{\mathrm{B}}=K D F(\bar{K} \| H(c)) \\
& m=\operatorname{PKE} \cdot \operatorname{Dec}\left(\boldsymbol{s}^{\prime}, c\right) \\
& (\bar{K}, \bar{r})=G\left(m \| H\left(p k^{\prime}\right)\right) \\
& K_{\mathrm{B}}=K D F(\bar{K} \| H(c)) \\
& m_{0}^{\prime} \leftarrow B^{32} ; m^{\prime}=H\left(m_{0}^{\prime}\right) \\
& \left(\bar{K}^{\prime}, \bar{r}^{\prime}\right)=G\left(m^{\prime} \| H(p k)\right) \\
& c^{\prime}=\operatorname{PKE} \cdot \operatorname{Enc}\left(p k, m^{\prime}, \bar{r}^{\prime}\right) \\
& m^{\prime}=\operatorname{PKE} \cdot \operatorname{Dec}\left(\boldsymbol{s}, c^{\prime}\right) \\
& \left(\bar{K}^{\prime}, \bar{r}^{\prime}\right)=G\left(m^{\prime} \| H(p k)\right) \\
& K_{\mathrm{A}}=K D F\left(\bar{K}^{\prime} \| H\left(c^{\prime}\right)\right)
\end{aligned}
$$

Bob
Eve

Summary

- We must emphasize that: this kind of attack is not a novel attack since Kyber is not equipped with any feature for dealing with authentication.
- We instead illustrates one symbolic approach for reasoning about KEMs rather than focusing on this kind of attack.
- In the same manner, we also conducted model checking with two other KEMs: Saber and MLWR.
- The same kind of attack was found.
- Future work: security analysis of post-quantum cryptographic protocols, which use post-quantum cryptographic primitives, such as KEMs.

Thank you for your attention!

