Formal Verification of Quantum Protocols

Yuxin Deng
East China Normal University

1．X．Qin，Y．Deng，and W．Du．Verifying Quantum Communication Protocols with Ground Bisimulation． TACAS＇20，LNCS 12079，pages 21－38．Springer， 2020.

2．W．Shi，Q．Cao，Y．Deng，H．Jiang，Y．Feng．Symbolic Reasoning about Quantum Circuits in Coq． Journal of Computer Science and Technology 36（6）：1291－1306， 2021.

Outline

Part I: Verification via ground bisimulation

- Preliminaries
- Quantum bisimulation
- Algorithm for checking ground bisimulation
- Implementation and experiments
- Summary

Part II: Verification via Coq

- Background
- Symbolic reasoning
- Experiments
- Summary

Part I: Verification via ground bisimulation

Correctness of protocols or algorithms

SPECIFICATION ~ IMPLEMENTATION

$$
\begin{aligned}
& \text { Alice } \stackrel{\text { def }}{=} \underline{c}_{A} ? q_{2} \cdot C N\left[q_{1}, q_{2}\right] \cdot H\left[q_{1}\right] \cdot M\left[q_{1}, q_{2} ; x\right] . S e t{ }^{\Psi}\left[q_{1}, q_{2}\right] \text {.el.x.nil; } \\
& B o b \stackrel{\text { def }}{=} \underline{c}_{B} ? q_{3} . e \text { e?x. } \sum_{0 \leq i \leq 3}\left(\text { if } x=i \text { then } \sigma^{i}\left[q_{3}\right] \cdot\right. \text { nil); } \\
& E P R \stackrel{\text { def }}{=} \operatorname{Set}^{\Psi}\left[q_{1}, q_{2}\right] \cdot \mathcal{c}_{A}!q_{2} \cdot \underline{c}_{B}!q_{3} \text {.nil; } \\
& T e l_{\text {spec }} \stackrel{\text { def }}{=} S W A P\left[q_{1}, q_{3}\right] \text {.nil. } \quad T e l \stackrel{\text { def }}{=}(A l i c e \||B o b| E P R) \backslash\left\{\underline{c}_{A}, \underline{c}_{B}, e\right\}
\end{aligned}
$$

Labelled transition systems

Def. A labelled transition system (LTS) is a triple $\langle S, A c t, \rightarrow\rangle$, where

1. S is a set of states
2. Act is a set of actions
3. $\rightarrow \subseteq S \times$ Act $\times S$ is the transition relation

Write $s \xrightarrow{\alpha} s^{\prime}$ for $\left(s, \alpha, s^{\prime}\right) \in \rightarrow$.

Bisimulation

s and t are bisimilar if there exists a bisimulation \mathcal{R} with $s \mathcal{R} t$.
[Park, 1981], [Milner, 1989]

Probabilistic labelled transition systems

Def. A probabilistic labelled transition system (pLTS) is a triple $\langle S, A c t, \rightarrow\rangle$, where

1. S is a set of states
2. Act is a set of actions
3. $\rightarrow \subseteq S \times \operatorname{Act} \times \mathcal{D}(S)$.

We usually write $s \xrightarrow{\alpha} \Delta$ in place of $(s, \alpha, \Delta) \in \rightarrow$.

Example

(a)

(b)

State-based probabilistic bisimulation

Write \sim_{s} for the largest state-based probabilistic bisimilarity.

Lifting relations

Def. Let S, T be two countable sets and $\mathcal{R} \subseteq S \times T$ be a binary relation. The lifted relation $\mathcal{R}^{\circ} \subseteq \mathcal{D}(S) \times \mathcal{D}(T)$ is the smallest relation satisfying

1. $s \mathcal{R} t$ implies $\bar{s} \mathcal{R}^{\circ} \bar{t}$
2. $\Delta_{i} \mathcal{R}^{\circ} \Theta_{i}$ for all $i \in I$ implies $\left(\sum_{i \in I} p_{i} \cdot \Delta_{i}\right) \mathcal{R}^{\circ}\left(\sum_{i \in I} p_{i} \cdot \Theta_{i}\right)$, where $\sum_{i} p_{i}=1$.
[D. et al., CONCUR 2009]

Hybrid architecture for quantum computation

The quantum process algebra qCCS

$$
\begin{aligned}
P, Q::= & \operatorname{nil}|\tau . P| c ? x . P|c!e . P| \underline{c} ? q . P|\underline{c}!q \cdot P| \mathcal{E}[\tilde{q}] \cdot P|M[\tilde{q} ; x] \cdot P| \\
& P+Q|P| Q|P[f]| P \backslash L \mid \text { if } b \text { then } P \mid A(\tilde{q} ; \tilde{x})
\end{aligned}
$$

Operational semantics

Let P be a closed quantum process. A pair of the form

$$
\langle P, \rho\rangle
$$

is called a configuration, where ρ is a density operator. Let $C o n$ be the set of configurations, ranged over by $\mathcal{C}, \mathcal{D}, \ldots$.

Operational semantics

Let $\mathcal{D}(C o n)$, ranged over by μ, ν, \cdots, be the set of all finite-supported probabilistic distributions over Con. The operational semantics of qCCS is given by the pLTS $\left\langle C o n, A c t_{c}, \rightarrow\right\rangle$, where $\rightarrow \subseteq \operatorname{Con} \times A c t_{c} \times \mathcal{D}($ Con $)$ is the smallest relation satisfying some inference rules.

Operational semantics

$$
\begin{aligned}
& \text { (Oper) } \\
& \langle\mathcal{E}[\tilde{q}] \cdot P, \rho\rangle \xrightarrow{\tau}\left\langle P, \mathcal{E}_{\tilde{q}}(\rho)\right\rangle \\
& (\text { Meas }) \\
& M=\sum_{i \in I} \lambda_{i} E^{i} \quad p_{i}=\operatorname{tr}\left(E_{\tilde{q}}^{i} \rho\right) \\
& \langle M[\widetilde{q} ; x] . P, \rho\rangle \xrightarrow{\tau} \sum_{i \in I} p_{i}\left\langle P\left[\lambda_{i} / x\right], E_{\widetilde{q}}^{i} \rho E_{\widetilde{q}}^{i} / p_{i}\right\rangle
\end{aligned}
$$

Here we consider projective measurements.

An example: Teleportation

Quantum teleportation [Bennett et al., PRL 1993] is one of the most important protocols in quantum information theory which makes use of a maximally entangled state to teleport an unknown quantum state by sending only classical information.

It serves as a key ingredient in many other quantum communication protocols.

An example: Teleportation

Let

$$
\begin{aligned}
\text { Alice } & :=C N o t\left[q, q_{1}\right] \cdot H[q] \cdot M\left[q, q_{1} ; x\right] \cdot c!x . \text { nil } \\
\text { Bob } & :=c ? x \cdot U_{x}\left[q_{2}\right] . \text { nil } \\
\text { Telep } & :=(\text { Alice } \| \text { Bob }) \backslash\{c\}
\end{aligned}
$$

Here $M=\sum_{i=0}^{3} \lambda_{i}|\tilde{i}\rangle\langle\tilde{i}|$, and

$$
\begin{aligned}
U_{x}\left[q_{2}\right] . \text { nil } & :=\quad \text { if } x=\lambda_{0} \text { then } \sigma_{0}\left[q_{2}\right] . \text { nil }+ \text { if } x=\lambda_{1} \text { then } \sigma_{1}\left[q_{2}\right] . \text { nil } \\
& +\quad \text { if } x=\lambda_{2} \text { then } \sigma_{3}\left[q_{2}\right] . n i l+\text { if } x=\lambda_{3} \text { then } \sigma_{2}\left[q_{2}\right] . \text { nil. }
\end{aligned}
$$

An example: Teleportation

Quantum ground bisimulation

Def. $\mathcal{R} \subseteq C o n \times C o n$ is a ground simulation if $\mathcal{C} \mathcal{R} \mathcal{D}$ implies that $q v(\mathcal{C})=q v(\mathcal{D}), t r_{q v(P)}(\mathcal{C})=t r_{q v(Q)}(\mathcal{D})$, and whenever $\mathcal{C} \xrightarrow{\alpha} \Delta$, there is some distribution Θ with $\mathcal{D} \xrightarrow{\hat{\alpha}} \Theta$ and $\Delta \mathcal{R}^{\circ} \Theta$. \mathcal{R} is a ground bisimulation if both \mathcal{R} and \mathcal{R}^{-1} are ground simulations

Intuition

Two configurations are not bisimilar in 3 cases:

- they do not have the same set of free quantum variables for their processes;
- the density operators of them corresponding to their quantum registers are different;
- one configuration has a transition that cannot be matched by any possible weak combined transition from the other.

Intuition

Two configurations are not bisimilar in 3 cases:

- they do not have the same set of free quantum variables for their processes;
- the density operators of them corresponding to their quantum registers are different;
- one configuration has a transition that cannot be matched by any possible weak combined transition from the other \longrightarrow reduced to a linear programming problem

Predicate LP

Use the algorithm of [Turrini and Hermanns 2015] to check the step condition.

- Add more edges and vertexes to construct a flow network;
- Generate constraints according to the flow network to reduce the problem into a linear programming problem.

We define a predicate $\mathbf{L P}$ which is true if and only if the linear programming problem has a solution.
A. Turrini and H. Hermanns, Polynomial time decision algorithms for probabilistic automata, Inf. \& Comp. 244 (2015), 134-171.

The Algorithm

Require: Two pLTSs with initial configurations t and u.
Ensure: A boolean value $b_{\text {res }}$ indicating if the two pLTSs are ground bisimilar.
1: function GroundBisimulation $(t, u)=$
2: \quad NonBisim $:=\emptyset$
3: \quad function $\operatorname{Bisim}(t, u)=\operatorname{try}\{$
4: \quad Bisim $:=\emptyset$
5: \quad Visited $:=\emptyset$
6: Assumed $:=\emptyset$
7: return Match $(t, u$, Visited)
8: $\quad\}$ catch WrongAssumptionException $\Rightarrow \operatorname{Bisim}(t, u)$

```
1: Visited: \(=\) Visited \(\cup\{(t, u)\} \quad \triangleright t=\langle P, \rho\rangle\) and \(u=\langle Q, \sigma\rangle\)
2: \(b:=\bigwedge_{\alpha \in \operatorname{Act}(t)} \operatorname{MatchAction}(\alpha, t, u\), Visited)
3: \(\bar{b}:=\bigwedge_{\alpha \in \operatorname{Act}(u)}\) MatchAction( \(\alpha, u, t\), Visited \()\)
4: \(b_{c_{1}}:=q v(P)=q v(Q)\)
5: \(b_{c_{2}}:=\operatorname{tr}_{q v(P)}(\rho)=\operatorname{tr}_{q v(P)}(\sigma)\)
6: \(b_{\text {res }}:=b \wedge \bar{b} \wedge b_{c_{1}} \wedge b_{c_{2}}\)
7: if \(b_{\text {res }}\) is tt then \(\operatorname{Bisim}=\operatorname{Bisim} \cup\{(t, u)\}\)
8: else if \(b_{\text {res }}\) is ff then
9: \(\quad\) NonBisim \(=\) NonBisim \(\cup\{(t, u)\}\)
10: \(\quad\) if \((t, u) \in\) Assumed then
11: raise WrongAssumptionException
12: return \(b_{\text {res }}\)
```

Algorithm 3 MatchAction $(\alpha, t, u$, Visited)
1: switch α do
2: case c !
3: \quad for $t \xrightarrow{c!e_{i}} \Delta_{i}$ do
$\begin{array}{ll}\text { 4: } & \text { Assume }\left\{t_{k}\right\}_{t_{k} \in\left\lceil\Delta_{i}\right\rceil} \text { and }\left\{u_{j}\right\} \underset{u \xrightarrow{c!e_{j}^{\prime}}}{ } \quad \Gamma \wedge e_{i}=e_{j}^{\prime} \wedge \\ \text { 5: } & \mathcal{R}:=\left\{\left(t_{k}, u_{j}\right) \mid \mathbf{C l o s e}\left(t_{k}, u_{j}, \text { Visited }\right)=\mathbf{t t}\right\}\end{array}$
6: $\quad \theta_{i}:=\mathbf{L P}\left(\Delta_{i}, u, \alpha, \mathcal{R}\right)$
7: otherwise
8: \quad for $t \xrightarrow{\alpha} \Delta_{i}$ do
9: \quad Assume $\left\{t_{k}\right\}_{t_{k} \in\left\lceil\Delta_{i}\right\rceil}$ and $\left\{u_{j}\right\}_{u}{ }^{\alpha} \Gamma \wedge u_{j} \in\lceil\Gamma\rceil$
10: $\quad \mathcal{R}:=\left\{\left(t_{k}, u_{j}\right) \mid\right.$ Close $\left(t_{k}, u_{j}\right.$, Visited $\left.)=\mathbf{t t}\right\}$
11: $\quad \theta_{i}:=\mathbf{L P}\left(\Delta_{i}, u, \alpha, \mathcal{R}\right)$
12: return $\bigwedge_{i} \theta_{i}$

```
Algorithm 4 Close
    1: if \((t, u) \in B\) isim then
    2: return tt
    3: else if \((t, u) \in N o n B i s i m\) then
    4: return ff
    5: else if \((t, u) \in\) Visited then
    6: \(\quad\) Assumed \(=\) Assumed \(\cup\{(t, u)\}\)
    7: return tt
    8: else
    9: return Match \((t, u, V i s i t e d))\)
```


Termination and Correctness

Thm. (Termination) Given two configurations t and u, the function GroundBisimulation (t, u) always terminates.

Thm. (Correctness) Given two configurations t and u from two pLTSs, GroundBisimulation (t, u) returns true if and only if they are ground bisimilar.

Thm. (Complexity) Let the number of nodes reachable from t and u be n . The time complexity of function GroundBisimulation (t, u) is polynomial in n.

Implementation

Verification workflow:

https://github.com/MartianQXD/QBisim

Experiments

Program	Variables	Bisi	Impl	Spec	\mathbf{N}	B	ms
Super-dense coding	$q_{1} q_{2}=\|00\rangle, x=1$	Yes	16	5	9	20	712
	$q_{1} q_{2}=\|00\rangle, x=5$	No	6	2	-	-	54
Super-dense coding (modified)	$q_{1} q_{2}=\|00\rangle, x=5$	Yes	8	5	5	12	342
Teleportation	$q_{1} q_{2} q_{3}=\|100\rangle$	Yes	34	3	22	22	910
	$q_{1} q_{2} q_{3}=\frac{1}{\sqrt{2}}\|000\rangle+\frac{1}{\sqrt{2}}\|100\rangle$	Yes	34	3	22	22	923
	$q_{1} q_{2} q_{3}=\frac{\sqrt{3}}{2}\|000\rangle+\frac{1}{2}\|100\rangle$	Yes	34	3	22	22	934
Secret Sharing	$q_{1} q_{2} q_{3} q_{4}=\|1000\rangle$	Yes	103	3	65	65	5704
	$q_{1} q_{2} q_{3} q_{4}=\frac{1}{\sqrt{2}}\|0000\rangle+\frac{1}{\sqrt{2}}\|1000\rangle$	Yes	103	3	65	65	5538
	$q_{1} q_{2} q_{3} q_{4}=\frac{\sqrt{3}}{2}\|0000\rangle+\frac{1}{2}\|1000\rangle$	Yes	103	3	65	65	5485
BB84	$q_{1} q_{2} q_{3}=\|000\rangle$	Yes	152	80	1084	3216	393407
B92	$q_{1} q_{2}=\|00\rangle$	Yes	64	80	466	1284	105347
E91	$q_{1} q_{2} q_{3} q_{4}=\|0000\rangle$	Yes	124	80	964	2676	334776

Summary

- An on-the-fly algorithm to check ground bisimulation for quantum processes in qCCS
- A tool to verify quantum communication protocols modelled as qCCS processes
- Verification of several non-trivial quantum communication protocols from super-dense coding to key distribution

Part II: Verification via Coq

Motivation

The Deutsch-Jozsa algorithm family: to determine if a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is a constant or a balanced function.

Existing work

- Paykin et al. defined a quantum circuit language QWIRE in Coq
- Hietala et al. developed a quantum circuit compiler VOQC in Coq
- Liu et al. formalized a quantum Hoare logic in Isabelle/HOL
- Unruh developed a relational quantum Hoare logic in Isabelle/HOL
- Chareton et al. proposed a verification framework QBRICKS in Why3
- ...

Terms and laws

Scalars:	$\begin{aligned} & \hline \mathbb{C} \\ & \|0\rangle,\|1\rangle \end{aligned}$	
Basic vectors:		
Operators:	$\cdot, \times,+, \otimes, \dagger$	
Laws:	L1 〈	$\langle 0 \mid 0\rangle=\langle 1 \mid 1\rangle=1,\langle 0 \mid 1\rangle=\langle 1 \mid 0\rangle=0$
	L2 A	Associativity of $\cdot, \times,+, \otimes$
	L3 0	$0 \cdot A_{m \times n}=\mathbf{0}_{m \times n}, c \cdot \mathbf{0}=\mathbf{0}, 1 \cdot A=A$
	L4 c	$c \cdot(A+B)=c \cdot A+c \cdot B$
	L5 c	$c \cdot(A \times B)=(c \cdot A) \times B=A \times(c \cdot B)$
	L6	$c \cdot(A \otimes B)=(c \cdot A) \otimes B=A \otimes(c \cdot B)$
	L7 0	$\mathbf{0}_{m \times n} \times A_{n \times p}=\mathbf{0}_{m \times p}=A_{m \times n} \times \mathbf{0}_{n \times p}$
	L8 1	$I_{m} \times A_{m \times n}=A_{m \times n}=A_{m \times n} \times I_{n}, \quad I_{m} \otimes I_{n}=I_{m n}$
	L9 0	$\mathbf{0}+A=A=A+\mathbf{0}$
		$\mathbf{0}_{m \times n} \otimes A_{p \times q}=\mathbf{0}_{m p \times n q}=A_{p \times q} \otimes \mathbf{0}_{m \times n}$
	L11	$(A+B) \times C=A \times C+B \times C, C \times(A+B)=C \times A+C \times B$
	L12	$(A+B) \otimes C=A \otimes C+B \otimes C, C \otimes(A+B)=C \otimes A+C \otimes B$
	L13	$(A \otimes B) \times(C \otimes D)=(A \times C) \otimes(B \times D)$
	L14	$(c \cdot A)^{\dagger}=c^{*} \cdot A^{\dagger},(A \times B)^{\dagger}=B^{\dagger} \times A^{\dagger}$
	L15	$(A+B)^{\dagger}=A^{\dagger}+B^{\dagger},(A \otimes B)^{\dagger}=A^{\dagger} \otimes B^{\dagger}$
	L16	$\left(A^{\dagger}\right)^{\dagger}=A$

Reduction strategies

- orthogonal_reduce:

$$
\langle 0 \mid 0\rangle=\langle 1 \mid 1\rangle,\langle 0 \mid 1\rangle=\langle 1 \mid 0\rangle=0
$$

- base_reduce:

$$
\begin{aligned}
\boldsymbol{B}_{0}=|\mathbf{0}\rangle \times\langle\mathbf{0}|, \quad \boldsymbol{B}_{1}=|\mathbf{0}\rangle \times\langle\mathbf{1}|, \\
\boldsymbol{B}_{2}=|\mathbf{1}\rangle \times\langle\mathbf{0}|, \quad \boldsymbol{B}_{3}=|\mathbf{1}\rangle \times\langle\mathbf{1}| . \\
\mathbf{B}_{0} \times|0\rangle=|0\rangle \times\langle 0| \times|0\rangle=|0\rangle \times(\langle 0| \times|0\rangle)=|0\rangle \times 1=|0\rangle
\end{aligned}
$$

- gate_reduce:

$$
\mathbf{X} \times|0\rangle=\left(\mathbf{B}_{1}+\mathbf{B}_{\mathbf{2}}\right) \times|0\rangle=\mathbf{B}_{\mathbf{1}} \times|0\rangle+\mathbf{B}_{\mathbf{2}} \times|0\rangle=0+|1\rangle=|1\rangle
$$

- operate_reduce:

Puts together all the above results to reason about circuits.

Example: the U_{f} gate

Lemma DJ_1 :
(n > 0) \%nat ->
(Uf n) $\times\left(\left(k r o n _n n|+\rangle\right) \otimes|-\rangle\right)=($ kron_n $n|+\rangle) \otimes|-\rangle$.

Circuit equivalences

- Matrix equivalence:

Consider each quantum gate as a unitary matrix and the whole circuit as a composition of matrices.

- Observational equivalence:

Consider a circuit as an operator that changes input quantum states to output.

Lemma ObsEquiv_state: forall $\{\mathrm{n}\}$ ($\psi \phi$: Matrix n 1), $\psi \approx \phi\langle-\rangle \times(\psi \dagger)=\phi \times(\phi \dagger)$.

Lemma ObsEquiv_operator: forall $\{\mathrm{n}\}$ (A B: Matrix n n), $\mathrm{A} \approx \mathrm{B}\langle->$ (forall ψ : Matrix $\mathrm{n} 1, \mathrm{~A} \times \psi \approx \mathrm{B} \times \psi$).

Circuit equivalences

Summary

A symbolic approach to reasoning about quantum circuits in Coq based on a small set of equational laws.

Comparison with the computational approach.

	Deutsch	Simon	Teleportation	Secret sharing	QFT	Grover
Symbolic	3656	53795	39715	68919	25096	146834
Computational	25190	180724	46450	170490	68730	934570

Future work

- Check symbolic bisimulations
- Verify quantum protocols with more qubits
- Extend the symbolic approach from quantum circuit models to quantum programs
Y. Feng, Y. Deng, and M. Ying, Symbolic bisimulation for quantum processes, ACM Trans. Computational Logic 15 (2014), no. 2, 1-32.

Thank you!

yxdeng@sei.ecnu.edu.cn

