
Formal Verification of Quantum Protocols

Yuxin Deng

East China Normal University

1. X. Qin, Y. Deng, and W. Du. Verifying Quantum Communication Protocols with Ground Bisimulation.

TACAS’20, LNCS 12079, pages 21-38. Springer, 2020.

2. W. Shi, Q. Cao, Y. Deng, H. Jiang, Y. Feng. Symbolic Reasoning about Quantum Circuits in Coq.

Journal of Computer Science and Technology 36(6):1291-1306, 2021.

1

Outline

Part I: Verification via ground bisimulation

• Preliminaries

• Quantum bisimulation

• Algorithm for checking ground bisimulation

• Implementation and experiments

• Summary

Part II: Verification via Coq

• Background

• Symbolic reasoning

• Experiments

• Summary

2

Part I: Verification via ground bisimulation

3

Correctness of protocols or algorithms

SPECIFICATION ∼ IMPLEMENTATION

4

Labelled transition systems

Def. A labelled transition system (LTS) is a triple 〈S,Act ,→〉, where

1. S is a set of states

2. Act is a set of actions

3. → ⊆ S ×Act × S is the transition relation

Write s
α−→ s′ for (s, α, s′) ∈ →.

5

Bisimulation

s
a−→ s′

R R
t

a−→ t′

s and t are bisimilar if there exists a bisimulation R with s R t.

[Park, 1981], [Milner, 1989]

6

Probabilistic labelled transition systems

Def. A probabilistic labelled transition system (pLTS) is a triple

〈S,Act ,→〉, where

1. S is a set of states

2. Act is a set of actions

3. → ⊆ S ×Act ×D(S).

We usually write s
α−→ ∆ in place of (s, α,∆) ∈ →.

7

Example

8

State-based probabilistic bisimulation

s
a−→ ∆

R R◦

t
a−→ Θ

Write ∼s for the largest state-based probabilistic bisimilarity.

9

Lifting relations

Def. Let S, T be two countable sets and R ⊆ S × T be a binary relation.

The lifted relation R◦ ⊆ D(S)×D(T) is the smallest relation satisfying

1. s R t implies s R◦ t

2. ∆iR◦Θi for all i ∈ I implies (
∑
i∈I pi ·∆i) R◦ (

∑
i∈I pi ·Θi), where∑

i pi = 1.

[D. et al., CONCUR 2009]

10

Hybrid architecture for quantum computation

11

The quantum process algebra qCCS

P,Q ::= nil | τ.P | c?x.P | c!e.P | c?q.P | c!q.P | E [q̃].P |M [q̃;x].P |
P +Q | P || Q | P [f] | P\L | if b then P | A(q̃; x̃)

12

Operational semantics

Let P be a closed quantum process. A pair of the form

〈P, ρ〉

is called a configuration, where ρ is a density operator. Let Con be the set

of configurations, ranged over by C,D,

13

Operational semantics

Let D(Con), ranged over by µ, ν, · · · , be the set of all finite-supported

probabilistic distributions over Con. The operational semantics of qCCS is

given by the pLTS 〈Con,Actc,−→〉, where −→ ⊆ Con×Actc ×D(Con) is the

smallest relation satisfying some inference rules.

14

Operational semantics

(Oper)

〈E [q̃].P, ρ〉 τ−→ 〈P, Eq̃(ρ)〉

(Meas)

M =
∑
i∈I λiE

i pi = tr(Eiq̃ρ)

〈M [q̃;x].P, ρ〉 τ−→∑
i∈I pi〈P [λi/x], Eiq̃ρE

i
q̃/pi〉

Here we consider projective measurements.

15

An example: Teleportation

Quantum teleportation [Bennett et al., PRL 1993] is one of the most

important protocols in quantum information theory which makes use of a

maximally entangled state to teleport an unknown quantum state by

sending only classical information.

It serves as a key ingredient in many other quantum communication

protocols.

16

An example: Teleportation

H ✒

ZM1XM2

M1

M2

|ψ〉

|ψ〉

|Ψ〉
✒

Let

Alice := CNot[q, q1].H[q].M [q, q1; x].c!x.nil

Bob := c?x.Ux[q2].nil

Telep := (Alice‖Bob)\{c}

Here M =
∑3
i=0 λi |̃i〉〈̃i|, and

Ux[q2].nil := if x = λ0 then σ0[q2].nil + if x = λ1 then σ1[q2].nil

+ if x = λ2 then σ3[q2].nil + if x = λ3 then σ2[q2].nil.

17

An example: Teleportation

〈Telep, [(α|0〉+ β|1〉)⊗ 1√
2
(|00〉+ |11〉)]〉

〈(c!λ0.nil‖Bob)\{c},
[α|000〉+ β|001〉]〉

τ

〈(H [q].M [q, q1;x].c!x.nil‖Bob)\{c}, [1√
2
(α(|000〉+ |011〉) + β(|110〉+ |101〉))]〉

〈(M [q, q1;x].c!x.nil‖Bob)\{c}, [12 (α(|000〉+ |100〉+ |011〉+ |111〉) + β(|010〉 − |110〉+ |001〉 − |101〉))]〉

〈(c!λ1.nil‖Bob)\{c},
[α|011〉+ β|010〉]〉

〈(c!λ2.nil‖Bob)\{c},
[α|100〉 − β|101〉]〉

〈(c!λ3.nil‖Bob)\{c},
[α|111〉 − β|110〉]〉

❄
τ

❄
τ

✾ ❂ $ ③

❄
τ

❄
τ

〈(nil‖σ1[q2].nil)\{c},
[|01〉 ⊗ (α|1〉+ β|0〉)]〉

〈(nil‖σ3[q2].nil)\{c},
[|10〉 ⊗ (α|0〉 − β|1〉)]〉

〈(nil‖σ2[q2].nil)\{c},
[|11〉 ⊗ (α|1〉 − β|0〉)]〉

〈(nil‖σ0[q2].nil)\{c},
[|00〉 ⊗ (α|0〉+ β|1〉)]〉

❄
τ

1/4 1/4 1/4
1/4

❄
τ

❄
τ

❄
τ

〈(nil‖nil)\{c},
[|01〉 ⊗ (α|0〉+ β|1〉)]〉

〈(nil‖nil)\{c},
[|10〉 ⊗ (α|0〉+ β|1〉)]〉

〈(nil‖nil)\{c},
[|11〉 ⊗ (α|0〉+ β|1〉)]〉

〈(nil‖nil)\{c},
[|00〉 ⊗ (α|0〉+ β|1〉)]〉

❄
τ

❄

❄
τ

18

Quantum ground bisimulation

Def. R ⊆ Con × Con is a ground simulation if C R D implies that

qv(C) = qv(D), trqv(P)(C) = trqv(Q)(D), and

whenever C α−→ ∆, there is some distribution Θ with D α̂
=⇒ Θ and ∆R◦Θ.

R is a ground bisimulation if both R and R−1 are ground simulations

19

Intuition

Two configurations are not bisimilar in 3 cases:

• they do not have the same set of free quantum variables for their

processes;

• the density operators of them corresponding to their quantum registers

are different;

• one configuration has a transition that cannot be matched by any

possible weak combined transition from the other.

20

Intuition

Two configurations are not bisimilar in 3 cases:

• they do not have the same set of free quantum variables for their

processes;

• the density operators of them corresponding to their quantum registers

are different;

• one configuration has a transition that cannot be matched by any

possible weak combined transition from the other

−→ reduced to a linear programming problem

21

Predicate LP

Use the algorithm of [Turrini and Hermanns 2015] to check the step

condition.

• Add more edges and vertexes to construct a flow network;

• Generate constraints according to the flow network to reduce the

problem into a linear programming problem.

We define a predicate LP which is true if and only if the linear

programming problem has a solution.

A. Turrini and H. Hermanns, Polynomial time decision algorithms for probabilistic

automata, Inf. & Comp. 244 (2015), 134-171.

22

The Algorithm

Require: Two pLTSs with initial configurations t and u.

Ensure: A boolean value bres indicating if the two pLTSs are ground

bisimilar.

1: function GroundBisimulation(t, u) =

2: NonBisim := ∅
3: function Bisim(t, u) = try {
4: Bisim := ∅
5: V isited := ∅
6: Assumed := ∅
7: return Match(t,u,Visited)

8: } catch WrongAssumptionException ⇒ Bisim(t, u)

23

1: V isited:=V isited ∪ {(t, u)} . t = 〈P, ρ〉 and u = 〈Q, σ〉
2: b:=

∧
α∈Act(t) MatchAction(α,t,u,Visited)

3: b:=
∧
α∈Act(u) MatchAction(α,u,t,Visited)

4: bc1 :=qv(P) = qv(Q)

5: bc2 :=trqv(P)(ρ) = trqv(P)(σ)

6: bres:=b ∧ b ∧ bc1 ∧ bc2
7: if bres is tt then Bisim = Bisim ∪ {(t, u)}
8: else if bres is ff then

9: NonBisim = NonBisim ∪ {(t, u)}
10: if (t, u) ∈ Assumed then

11: raise WrongAssumptionException

12: return bres

24

Algorithm 3 MatchAction(α, t, u, V isited)

1: switch α do

2: case c!

3: for t
c!ei−−→ ∆i do

4: Assume {tk}tk∈d∆ie and {uj}
u
c!e′
j

==⇒Γ∧ei=e′j∧uj∈dΓe
5: R:= {(tk, uj)|Close(tk, uj , V isited) = tt}
6: θi:=LP(∆i, u, α,R)

7: otherwise

8: for t
α−→ ∆i do

9: Assume {tk}tk∈d∆ie and {uj}u α
=⇒Γ∧uj∈dΓe

10: R:= {(tk, uj)|Close(tk, uj , V isited) = tt}
11: θi:=LP(∆i, u, α,R)

12: return
∧
i θi

25

Algorithm 4 Close

1: if (t, u) ∈ Bisim then

2: return tt

3: else if (t, u) ∈ NonBisim then

4: return ff

5: else if (t, u) ∈ V isited then

6: Assumed = Assumed ∪ {(t, u)}
7: return tt

8: else

9: return Match(t, u, V isited))

26

Termination and Correctness

Thm. (Termination) Given two configurations t and u, the function

GroundBisimulation(t, u) always terminates.

Thm. (Correctness) Given two configurations t and u from two pLTSs,

GroundBisimulation(t, u) returns true if and only if they are ground

bisimilar.

Thm. (Complexity) Let the number of nodes reachable from t and u be

n. The time complexity of function GroundBisimulation(t, u) is

polynomial in n.

27

Implementation

Verification workflow:

Implementation,
Variable Initialisation,
Operator Definition

Parser

Strong
Bisimulation

Checking
Module

Specification,
Variable Initialisation,
Operator Definition

pLTS
Generation

Module

!"# $%#"&

Weak
Bisimulation

Checking
Module

$%#"&

Strong Bisimilar
Configuration

Pairs

Weak Bisimilar
Configuration

Pairs

https://github.com/MartianQXD/QBisim

28

Experiments

29

Summary

• An on-the-fly algorithm to check ground bisimulation for quantum

processes in qCCS

• A tool to verify quantum communication protocols modelled as qCCS

processes

• Verification of several non-trivial quantum communication protocols

from super-dense coding to key distribution

30

Part II: Verification via Coq

31

Motivation

The Deutsch-Jozsa algorithm family: to determine if a function

f : {0, 1}n → {0, 1} is a constant or a balanced function.

32

Existing work

• Paykin et al. defined a quantum circuit language QWIRE in Coq

• Hietala et al. developed a quantum circuit compiler VOQC in Coq

• Liu et al. formalized a quantum Hoare logic in Isabelle/HOL

• Unruh developed a relational quantum Hoare logic in Isabelle/HOL

• Chareton et al. proposed a verification framework QBRICKS in Why3

• ...

33

Terms and laws

34

Reduction strategies

• orthogonal reduce:

〈0|0〉 = 〈1|1〉, 〈0|1〉 = 〈1|0〉 = 0

• base reduce:

B0 × |0〉 = |0〉 × 〈0| × |0〉 = |0〉 × (〈0| × |0〉) = |0〉 × 1 = |0〉

• gate reduce:

X× |0〉 = (B1 + B2)× |0〉 = B1 × |0〉+ B2 × |0〉 = 0 + |1〉 = |1〉

• operate reduce:

Puts together all the above results to reason about circuits.

35

Example: the Uf gate

36

Circuit equivalences

• Matrix equivalence:

Consider each quantum gate as a unitary matrix and the whole circuit

as a composition of matrices.

• Observational equivalence:

Consider a circuit as an operator that changes input quantum states to

output.

37

Circuit equivalences

38

Summary

A symbolic approach to reasoning about quantum circuits in Coq based on

a small set of equational laws.

Comparison with the computational approach.

39

Future work

• Check symbolic bisimulations

• Verify quantum protocols with more qubits

• Extend the symbolic approach from quantum circuit models to

quantum programs

Y. Feng, Y. Deng, and M. Ying, Symbolic bisimulation for quantum processes, ACM

Trans. Computational Logic 15 (2014), no. 2, 1–32.

40

Thank you!

yxdeng@sei.ecnu.edu.cn

41

